Abstract

We measure the M/# and the bit-error rate of a digital holographic storage system with a 4f optical arrangement for three configurations: recording at the Fourier plane with and without a phase mask and recording outside the Fourier plane without a phase mask. Unexpectedly, no significant change in the dynamic range was observed when a phase mask was used to record in thick crystals. However, we show that a phase mask is a key component in a 4f digital holographic storage system if high-fidelity holograms with optimum volumetric density are to be stored.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
    [CrossRef]
  2. L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
    [CrossRef]
  3. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  4. J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  5. G. Sincerbox, “Holographic storage revisited,” in Current Trends in Optics, C. Dainty, ed. (Academic, New York, 1994), pp. 195–207.
  6. G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
    [CrossRef]
  7. M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360–2373 (1996).
    [CrossRef] [PubMed]
  8. G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10,000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7, p. 9.
  9. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Guenther, R. M. Macfarlane, G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997).
    [CrossRef]
  10. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  11. G. Barbastathis, D. Psaltis, “Comparison of the Fourier and image plane geometries for high-density holographic storage,” paper presented at the OSA Annual Meeting, Rochester, N.Y., 20–24 October 1996, paper MKK7.
  12. C. B. Burkhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1969).
    [CrossRef]
  13. Y. Takeda, Y. Oshida, Y. Miyamura, “Random phase shifters for Fourier transformed holograms,” Appl. Opt. 11, 818–822 (1972).
    [CrossRef] [PubMed]
  14. Y. Nakayama, M. Kato, “Diffuser with a pseudorandom phase sequence,” J. Opt. Soc. Am. 69, 1367–1372 (1979).
    [CrossRef]
  15. W. C. Stewart, A. H. Firester, E. C. Fox, “Random phase data masks: fabrication tolerances and advantages of four level masks,” Appl. Opt. 11, 604–608 (1972).
    [CrossRef] [PubMed]
  16. Q. Gao, R. Kostuk, “Improvement to holographic digital data-storage systems with random and pseudorandom phase masks,” Appl. Opt. 36, 4853–4861 (1997).
    [CrossRef] [PubMed]
  17. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  18. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–901 (1996).
    [CrossRef] [PubMed]
  19. G. W. Burr, “Volume holographic storage using the 90° geometry,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1996).
  20. M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel cross talk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
    [CrossRef] [PubMed]

1997 (3)

1996 (2)

1995 (1)

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

1994 (1)

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993 (2)

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
[CrossRef] [PubMed]

1988 (1)

1979 (1)

1972 (2)

1969 (1)

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

1963 (1)

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Barbastathis, G.

G. Barbastathis, D. Psaltis, “Comparison of the Fourier and image plane geometries for high-density holographic storage,” paper presented at the OSA Annual Meeting, Rochester, N.Y., 20–24 October 1996, paper MKK7.

Bashaw, M.

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

Bernal, M.-P.

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Brady, D.

Burkhardt, C. B.

Burr, G. W.

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel cross talk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
[CrossRef] [PubMed]

R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Guenther, R. M. Macfarlane, G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509–1511 (1997).
[CrossRef]

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–901 (1996).
[CrossRef] [PubMed]

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10,000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7, p. 9.

G. W. Burr, “Volume holographic storage using the 90° geometry,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1996).

Coufal, H.

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Firester, A. H.

Fox, E. C.

Gao, Q.

Grygier, R. K.

Guenther, H.

Heanue, J.

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

Hoffnagle, J. A.

Jefferson, C. M.

Kato, M.

Kostuk, R.

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Macfarlane, R. M.

Miyamura, Y.

Mok, F.

Mok, F. H.

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–901 (1996).
[CrossRef] [PubMed]

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10,000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7, p. 9.

Nakayama, Y.

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Oesterschulze, E.

Oshida, Y.

Psaltis, D.

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–901 (1996).
[CrossRef] [PubMed]

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
[CrossRef]

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10,000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7, p. 9.

G. Barbastathis, D. Psaltis, “Comparison of the Fourier and image plane geometries for high-density holographic storage,” paper presented at the OSA Annual Meeting, Rochester, N.Y., 20–24 October 1996, paper MKK7.

Quintanilla, M.

Shelby, R. M.

Sincerbox, G.

G. Sincerbox, “Holographic storage revisited,” in Current Trends in Optics, C. Dainty, ed. (Academic, New York, 1994), pp. 195–207.

Sincerbox, G. T.

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Stewart, W. C.

Takeda, Y.

van Heerden, P. J.

Wagner, K.

Wimmer, P.

Wittmann, G.

Appl. Opt. (8)

P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963).
[CrossRef]

C. B. Burkhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1969).
[CrossRef]

W. C. Stewart, A. H. Firester, E. C. Fox, “Random phase data masks: fabrication tolerances and advantages of four level masks,” Appl. Opt. 11, 604–608 (1972).
[CrossRef] [PubMed]

Y. Takeda, Y. Oshida, Y. Miyamura, “Random phase shifters for Fourier transformed holograms,” Appl. Opt. 11, 818–822 (1972).
[CrossRef] [PubMed]

D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
[CrossRef]

Q. Gao, R. Kostuk, “Improvement to holographic digital data-storage systems with random and pseudorandom phase masks,” Appl. Opt. 36, 4853–4861 (1997).
[CrossRef] [PubMed]

M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360–2373 (1996).
[CrossRef] [PubMed]

M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel cross talk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

G. W. Burr, F. H. Mok, D. Psaltis, “Angle and space multiplexed holographic storage using 90 degree geometry,” Opt. Commun. 117, 49–55 (1995).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

L. Hesselink, M. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–651 (1993).
[CrossRef]

Science (1)

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Other (4)

G. Sincerbox, “Holographic storage revisited,” in Current Trends in Optics, C. Dainty, ed. (Academic, New York, 1994), pp. 195–207.

G. W. Burr, F. H. Mok, D. Psaltis, “Storage of 10,000 holograms in LiNbO3:Fe,” in Conference on Lasers and Electro-Optics, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CMB7, p. 9.

G. Barbastathis, D. Psaltis, “Comparison of the Fourier and image plane geometries for high-density holographic storage,” paper presented at the OSA Annual Meeting, Rochester, N.Y., 20–24 October 1996, paper MKK7.

G. W. Burr, “Volume holographic storage using the 90° geometry,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a holographic data-storage system in a 4f configuration when (a) recording at the Fourier transform plane (FP) using a phase mask, (b) recording at the Fourier transform plane, and (c) placing the recording medium behind the Fourier plane. The focal length of all lenses that image the SLM into the CCD is f. The phase mask is imaged into the data mask plane by use of a telescopic system constituted by the two lenses L.

Fig. 2
Fig. 2

BER of transmitted images as the six-level phase mask was translated along the optical axis from the nominal plane with respect to the data mask. A translation of only 100 μm produced several hundred errors in the reconstructed image.

Fig. 3
Fig. 3

M/# as a function of object–reference-beam intensity ratio in LiNbO3:Fe with and without a six-level phase mask. Both measured and fitted values are displayed.

Fig. 4
Fig. 4

M/# as the modulation depth was varied in SBN:Ce with and without a six-level phase mask. There is no significant improvement in the performance of the system when the six-level phase mask is used.

Fig. 5
Fig. 5

Diffraction efficiency measured at different cross sections of a recorded volume hologram with and without the six-level phase mask. The origin of the x axis corresponds to the beginning of the scan. The diffraction efficiency drops dramatically at the Fourier plane when no phase mask is used, yet reaches its highest value at this plane if the phase mask is in the system.

Fig. 6
Fig. 6

Histograms corresponding to two holograms recorded at the Fourier plane in LiNbO3:Fe (a) with a six-level phase mask and (b) without a phase mask. The M/# is 1.6 in both cases. With the phase mask, the BER is of the order of 10-8. When the hologram is recorded at the Fourier plane without the phase mask, the material saturation is such that the output page cannot be successfully decoded.

Fig. 7
Fig. 7

BER degradation as a function of the integrated photon flux over the object-beam exposure time for four cases measured in the 4f configuration: (a) Recording at the Fourier plane without a phase mask. (b) Recording 1 cm away from the Fourier plane without a phase mask. (c) Recording at the Fourier plane by use of a six-level phase mask. (d) Recording 2 cm away from the Fourier plane without a phase mask.

Fig. 8
Fig. 8

Comparison of the BER degradation for images and holograms recorded with the same object-beam exposures (0.245 J/cm2). The LiNbO3:Fe crystal was placed 2 cm behind the Fourier plane.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M / # = η   M .
M / # = A 0 τ r τ e .
A 0 1 - e - t τ r A 0 τ r t
e - t τ e ,

Metrics