Abstract

A method for the evaluation of images reconstructed from holograms recorded in thermoplastic materials is reported. The method is based on the use of the experimental modulation transfer function and nonlinear holographic characteristics of the recording material. Calculations have been carried out for high-numerical-aperture holograms of a five-element Ronchi ruling. The quality of the reconstructed image as a function of the recording parameters has been computed. The model predicts that it is possible to optimize holographic recording in these materials.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Urbach, R. W. Meier, “Thermoplastic xerographic holography,” Appl. Opt. 5, 666–667 (1966).
    [CrossRef] [PubMed]
  2. L. H. Lin, H. L. Beauchamp, “Write–read–erase in situ optical memory using thermoplastic holograms,” Appl. Opt. 9, 2088–2092 (1970).
    [CrossRef] [PubMed]
  3. J. Gaynor, “Photosensitive deformable films,” IEEE Trans. Electron Devices ED-19, 512–523 (1972).
    [CrossRef]
  4. W. C. Stewart, R. S. Mezrich, L. S. Cosentio, E. M. Nagel, F. S. Wendt, R. D. Lohman, “An experimental read–write holographic memory,” RCA Rev. 34(3), 3–44 (1973).
  5. R. F. Bergen, “Characterization of a xerographic thermoplastic holographic recording material,” Photogr. Sci. Eng. 17, 473–479 (1973).
  6. W. S. Colburn, E. N. Tompkins, “Improved thermoplastic-photoconductor devices for holographic recording,” Appl. Opt. 13, 2934–2941 (1974).
    [CrossRef] [PubMed]
  7. D. S. Lo, L. H. Johnson, R. W. Honebrink, “Spatial frequency response of thermoplastic films,” Appl. Opt. 14, 820–821 (1975).
    [CrossRef] [PubMed]
  8. P. Meyrueis, C. Liegeois, F. Lamy, B. Ineichen, “Large aperture thermoplastic film computer holographic recording system,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. SPIE353, 40–46 (1983).
    [CrossRef]
  9. H. F. Budd, “Dynamical theory of thermoplastic deformation,” J. Appl. Phys. 36, 1613–1616 (1965).
    [CrossRef]
  10. Yu. P. Gruscho, P. A. Ionkin, “Kinetics of the growth of mechanical relief in thermoplastic information recording,” Zh. Nautchn. Prikl. Fotogr. Kinematogr. 12, 166–172 (1967).
  11. H. R. Anderson, E. A. Bartkus, J. A. Reynolds, “Molecular engineering in the development of materials for thermoplastic recording,” IBM J. Res. Dev. 1971, 140–150.
  12. J. C. Urbach, “Thermoplastic hologram recording,” in Holographic Recording Materials, H. M. Smith, ed. (Springer-Verlag, Berlin, 1977), Chap. 6, pp. 161–207.
    [CrossRef]
  13. J. A. Cherkasov, E. L. Alexandrova, P. A. Burov, E. I. Snetkov, “Real-time optical information recording using molecular photothermoplastic heterostructures,” Opt. Eng. 31, 668–677 (1992).
    [CrossRef]
  14. P. Gravey, J.-Y. Moisan, “Dynamic holographic interconnects: experimental study using photothermoplastics with improved cycling properties,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. SPIE1507, 239–246 (1991).
    [CrossRef]
  15. I. Bányász, “The effects of the finite spatial resolution of thermoplastic recording materials on the holographic image,” J. Phys. (France) III 3, 1435–1444 (1993).
    [CrossRef]
  16. I. Bányász, “Method for the evaluation of the effects of film nonlinearities on the holographic image,” Opt. Lett. 18, 658–660 (1993).
    [CrossRef]
  17. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  18. J. C. Urbach, R. W. Meier, “Properties and limitations of hologram recording materials,” Appl. Opt. 8, 2269–2281 (1969).
    [CrossRef] [PubMed]
  19. V. I. Ankin, V. M. Ishimov, V. N. Mikhailov, D. I. Staselko, “Pulsed recording of holograms in the green on photothermoplastic and silver halide media,” Opt. Spectrosc. 74, 709–710 (1993).

1993 (3)

I. Bányász, “The effects of the finite spatial resolution of thermoplastic recording materials on the holographic image,” J. Phys. (France) III 3, 1435–1444 (1993).
[CrossRef]

I. Bányász, “Method for the evaluation of the effects of film nonlinearities on the holographic image,” Opt. Lett. 18, 658–660 (1993).
[CrossRef]

V. I. Ankin, V. M. Ishimov, V. N. Mikhailov, D. I. Staselko, “Pulsed recording of holograms in the green on photothermoplastic and silver halide media,” Opt. Spectrosc. 74, 709–710 (1993).

1992 (1)

J. A. Cherkasov, E. L. Alexandrova, P. A. Burov, E. I. Snetkov, “Real-time optical information recording using molecular photothermoplastic heterostructures,” Opt. Eng. 31, 668–677 (1992).
[CrossRef]

1975 (1)

1974 (1)

1973 (2)

W. C. Stewart, R. S. Mezrich, L. S. Cosentio, E. M. Nagel, F. S. Wendt, R. D. Lohman, “An experimental read–write holographic memory,” RCA Rev. 34(3), 3–44 (1973).

R. F. Bergen, “Characterization of a xerographic thermoplastic holographic recording material,” Photogr. Sci. Eng. 17, 473–479 (1973).

1972 (1)

J. Gaynor, “Photosensitive deformable films,” IEEE Trans. Electron Devices ED-19, 512–523 (1972).
[CrossRef]

1970 (1)

1969 (1)

1967 (1)

Yu. P. Gruscho, P. A. Ionkin, “Kinetics of the growth of mechanical relief in thermoplastic information recording,” Zh. Nautchn. Prikl. Fotogr. Kinematogr. 12, 166–172 (1967).

1966 (1)

1965 (1)

H. F. Budd, “Dynamical theory of thermoplastic deformation,” J. Appl. Phys. 36, 1613–1616 (1965).
[CrossRef]

Alexandrova, E. L.

J. A. Cherkasov, E. L. Alexandrova, P. A. Burov, E. I. Snetkov, “Real-time optical information recording using molecular photothermoplastic heterostructures,” Opt. Eng. 31, 668–677 (1992).
[CrossRef]

Anderson, H. R.

H. R. Anderson, E. A. Bartkus, J. A. Reynolds, “Molecular engineering in the development of materials for thermoplastic recording,” IBM J. Res. Dev. 1971, 140–150.

Ankin, V. I.

V. I. Ankin, V. M. Ishimov, V. N. Mikhailov, D. I. Staselko, “Pulsed recording of holograms in the green on photothermoplastic and silver halide media,” Opt. Spectrosc. 74, 709–710 (1993).

Bányász, I.

I. Bányász, “Method for the evaluation of the effects of film nonlinearities on the holographic image,” Opt. Lett. 18, 658–660 (1993).
[CrossRef]

I. Bányász, “The effects of the finite spatial resolution of thermoplastic recording materials on the holographic image,” J. Phys. (France) III 3, 1435–1444 (1993).
[CrossRef]

Bartkus, E. A.

H. R. Anderson, E. A. Bartkus, J. A. Reynolds, “Molecular engineering in the development of materials for thermoplastic recording,” IBM J. Res. Dev. 1971, 140–150.

Beauchamp, H. L.

Bergen, R. F.

R. F. Bergen, “Characterization of a xerographic thermoplastic holographic recording material,” Photogr. Sci. Eng. 17, 473–479 (1973).

Budd, H. F.

H. F. Budd, “Dynamical theory of thermoplastic deformation,” J. Appl. Phys. 36, 1613–1616 (1965).
[CrossRef]

Burov, P. A.

J. A. Cherkasov, E. L. Alexandrova, P. A. Burov, E. I. Snetkov, “Real-time optical information recording using molecular photothermoplastic heterostructures,” Opt. Eng. 31, 668–677 (1992).
[CrossRef]

Cherkasov, J. A.

J. A. Cherkasov, E. L. Alexandrova, P. A. Burov, E. I. Snetkov, “Real-time optical information recording using molecular photothermoplastic heterostructures,” Opt. Eng. 31, 668–677 (1992).
[CrossRef]

Colburn, W. S.

Cosentio, L. S.

W. C. Stewart, R. S. Mezrich, L. S. Cosentio, E. M. Nagel, F. S. Wendt, R. D. Lohman, “An experimental read–write holographic memory,” RCA Rev. 34(3), 3–44 (1973).

Gaynor, J.

J. Gaynor, “Photosensitive deformable films,” IEEE Trans. Electron Devices ED-19, 512–523 (1972).
[CrossRef]

Gravey, P.

P. Gravey, J.-Y. Moisan, “Dynamic holographic interconnects: experimental study using photothermoplastics with improved cycling properties,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. SPIE1507, 239–246 (1991).
[CrossRef]

Gruscho, Yu. P.

Yu. P. Gruscho, P. A. Ionkin, “Kinetics of the growth of mechanical relief in thermoplastic information recording,” Zh. Nautchn. Prikl. Fotogr. Kinematogr. 12, 166–172 (1967).

Honebrink, R. W.

Ineichen, B.

P. Meyrueis, C. Liegeois, F. Lamy, B. Ineichen, “Large aperture thermoplastic film computer holographic recording system,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. SPIE353, 40–46 (1983).
[CrossRef]

Ionkin, P. A.

Yu. P. Gruscho, P. A. Ionkin, “Kinetics of the growth of mechanical relief in thermoplastic information recording,” Zh. Nautchn. Prikl. Fotogr. Kinematogr. 12, 166–172 (1967).

Ishimov, V. M.

V. I. Ankin, V. M. Ishimov, V. N. Mikhailov, D. I. Staselko, “Pulsed recording of holograms in the green on photothermoplastic and silver halide media,” Opt. Spectrosc. 74, 709–710 (1993).

Johnson, L. H.

Lamy, F.

P. Meyrueis, C. Liegeois, F. Lamy, B. Ineichen, “Large aperture thermoplastic film computer holographic recording system,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. SPIE353, 40–46 (1983).
[CrossRef]

Liegeois, C.

P. Meyrueis, C. Liegeois, F. Lamy, B. Ineichen, “Large aperture thermoplastic film computer holographic recording system,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. SPIE353, 40–46 (1983).
[CrossRef]

Lin, L. H.

Lo, D. S.

Lohman, R. D.

W. C. Stewart, R. S. Mezrich, L. S. Cosentio, E. M. Nagel, F. S. Wendt, R. D. Lohman, “An experimental read–write holographic memory,” RCA Rev. 34(3), 3–44 (1973).

Meier, R. W.

Meyrueis, P.

P. Meyrueis, C. Liegeois, F. Lamy, B. Ineichen, “Large aperture thermoplastic film computer holographic recording system,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. SPIE353, 40–46 (1983).
[CrossRef]

Mezrich, R. S.

W. C. Stewart, R. S. Mezrich, L. S. Cosentio, E. M. Nagel, F. S. Wendt, R. D. Lohman, “An experimental read–write holographic memory,” RCA Rev. 34(3), 3–44 (1973).

Mikhailov, V. N.

V. I. Ankin, V. M. Ishimov, V. N. Mikhailov, D. I. Staselko, “Pulsed recording of holograms in the green on photothermoplastic and silver halide media,” Opt. Spectrosc. 74, 709–710 (1993).

Moisan, J.-Y.

P. Gravey, J.-Y. Moisan, “Dynamic holographic interconnects: experimental study using photothermoplastics with improved cycling properties,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. SPIE1507, 239–246 (1991).
[CrossRef]

Nagel, E. M.

W. C. Stewart, R. S. Mezrich, L. S. Cosentio, E. M. Nagel, F. S. Wendt, R. D. Lohman, “An experimental read–write holographic memory,” RCA Rev. 34(3), 3–44 (1973).

Reynolds, J. A.

H. R. Anderson, E. A. Bartkus, J. A. Reynolds, “Molecular engineering in the development of materials for thermoplastic recording,” IBM J. Res. Dev. 1971, 140–150.

Snetkov, E. I.

J. A. Cherkasov, E. L. Alexandrova, P. A. Burov, E. I. Snetkov, “Real-time optical information recording using molecular photothermoplastic heterostructures,” Opt. Eng. 31, 668–677 (1992).
[CrossRef]

Staselko, D. I.

V. I. Ankin, V. M. Ishimov, V. N. Mikhailov, D. I. Staselko, “Pulsed recording of holograms in the green on photothermoplastic and silver halide media,” Opt. Spectrosc. 74, 709–710 (1993).

Stewart, W. C.

W. C. Stewart, R. S. Mezrich, L. S. Cosentio, E. M. Nagel, F. S. Wendt, R. D. Lohman, “An experimental read–write holographic memory,” RCA Rev. 34(3), 3–44 (1973).

Tompkins, E. N.

Urbach, J. C.

Wendt, F. S.

W. C. Stewart, R. S. Mezrich, L. S. Cosentio, E. M. Nagel, F. S. Wendt, R. D. Lohman, “An experimental read–write holographic memory,” RCA Rev. 34(3), 3–44 (1973).

Appl. Opt. (5)

IBM J. Res. Dev. (1)

H. R. Anderson, E. A. Bartkus, J. A. Reynolds, “Molecular engineering in the development of materials for thermoplastic recording,” IBM J. Res. Dev. 1971, 140–150.

IEEE Trans. Electron Devices (1)

J. Gaynor, “Photosensitive deformable films,” IEEE Trans. Electron Devices ED-19, 512–523 (1972).
[CrossRef]

J. Appl. Phys. (1)

H. F. Budd, “Dynamical theory of thermoplastic deformation,” J. Appl. Phys. 36, 1613–1616 (1965).
[CrossRef]

J. Phys. (France) III (1)

I. Bányász, “The effects of the finite spatial resolution of thermoplastic recording materials on the holographic image,” J. Phys. (France) III 3, 1435–1444 (1993).
[CrossRef]

Opt. Eng. (1)

J. A. Cherkasov, E. L. Alexandrova, P. A. Burov, E. I. Snetkov, “Real-time optical information recording using molecular photothermoplastic heterostructures,” Opt. Eng. 31, 668–677 (1992).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

V. I. Ankin, V. M. Ishimov, V. N. Mikhailov, D. I. Staselko, “Pulsed recording of holograms in the green on photothermoplastic and silver halide media,” Opt. Spectrosc. 74, 709–710 (1993).

Photogr. Sci. Eng. (1)

R. F. Bergen, “Characterization of a xerographic thermoplastic holographic recording material,” Photogr. Sci. Eng. 17, 473–479 (1973).

RCA Rev. (1)

W. C. Stewart, R. S. Mezrich, L. S. Cosentio, E. M. Nagel, F. S. Wendt, R. D. Lohman, “An experimental read–write holographic memory,” RCA Rev. 34(3), 3–44 (1973).

Zh. Nautchn. Prikl. Fotogr. Kinematogr. (1)

Yu. P. Gruscho, P. A. Ionkin, “Kinetics of the growth of mechanical relief in thermoplastic information recording,” Zh. Nautchn. Prikl. Fotogr. Kinematogr. 12, 166–172 (1967).

Other (4)

P. Meyrueis, C. Liegeois, F. Lamy, B. Ineichen, “Large aperture thermoplastic film computer holographic recording system,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. SPIE353, 40–46 (1983).
[CrossRef]

R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

P. Gravey, J.-Y. Moisan, “Dynamic holographic interconnects: experimental study using photothermoplastics with improved cycling properties,” in Holographic Optics III: Principles and Applications, G. M. Morris, ed., Proc. SPIE1507, 239–246 (1991).
[CrossRef]

J. C. Urbach, “Thermoplastic hologram recording,” in Holographic Recording Materials, H. M. Smith, ed. (Springer-Verlag, Berlin, 1977), Chap. 6, pp. 161–207.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Diagram of the recording geometry.

Fig. 2
Fig. 2

Square root of the measured MTF (points) of a thermoplastic material (after Lo et al.7) and the fit (curve) made with Eq. (7).

Fig. 3
Fig. 3

Lin curves of a thermoplastic material. Symbols, measured by Colburn and Tompkins6; curves, fitted by Eq. (8). The visibility is V = 1.0 (filled circles), 0.8 (open squares), 0.575 (filled triangles), 0.309 (open circles). The parameters are shown in Table 1.

Fig. 4
Fig. 4

Spatial frequency belonging to the maximum of the material MTF as a function of the thickness of the thermoplastic layer. Points, experimental data published in Ref. 7; curve, a fit by Eq. (9).

Fig. 5
Fig. 5

Contrast, brightness, and fluctuation of the reconstructed image of a five-element Ronchi ruling versus the maximum bias exposure. R is the minimum beam ratio, 0.1.

Fig. 6
Fig. 6

Contrast, brightness, and fluctuation of the reconstructed image of a five-element Ronchi ruling versus the maximum bias exposure. R is the minimum beam ratio, 1.0.

Fig. 7
Fig. 7

Contrast, brightness, and fluctuation of the reconstructed image of a five-element Ronchi ruling versus the maximum bias exposure. R is the minimum beam ratio, 10.

Fig. 9
Fig. 9

Contrast, brightness, and fluctuation of the reconstructed image of a five-element Ronchi ruling versus minimum beam ratio. E 0 is the maximum bias exposure, 38 μJ/cm2.

Fig. 10
Fig. 10

Contrast, brightness, and fluctuation of the reconstructed image of a five-element Ronchi ruling versus minimum beam ratio. E 0 is the maximum bias exposure, 82 μJ/cm2.

Fig. 11
Fig. 11

Calculated reconstructed images of the test object. E 0, maximum bias exposure; R, minimum beam ratio.

Fig. 8
Fig. 8

Contrast, brightness, and fluctuation of the reconstructed image of a five-element Ronchi ruling versus the minimum beam ratio. E 0 is the maximum bias exposure, 14 μJ/cm2.

Tables (1)

Tables Icon

Table 1 Parameters of the σ(E0, V) Function of the Thermoplastic Materiala

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

t x ,   z = ξ 1 ξ 2 u 1 u 2 s u cos   θ   cos   ρ r 1 r 2 exp ik r 1 - r 2 d u d ξ ,
σ ν ξ ,   E 0 ξ ,   V ξ = σ 1 ν ξ σ 2 E 0 ξ ,   V ξ ,
S ξ = u 1 u 2 s u cos   θ r 1 exp ikr 1 d u .
P ξ = P ξ exp - ik ξ   sin   α r .
G ξ = M ξ P ξ S * ξ ,
t x = ξ 1 ξ 2   σ 1 ν ξ σ 2 E 0 ξ ,   V ξ M ξ P ξ S * ξ cos   ρ r 2 × exp ikr 2 d ξ .
σ 1 ν = exp - ν - ν 0 c 2 ,
σ 2 E 0 ,   V = f E 0 1 - exp - V exp - V - V 0 E 0 2 w 2 E 0 ,
Par E 0 = c i 01 1 exp   c i 11 - E 0 c i 12 + 1 + c i 13 × 1 exp E 0 - c i 21 c i 22 + 1 + c i 23 × 1 exp c i 31 - E 0 c i 32 + 1 + c i 33 ,
ν 0 lines / mm = 382 d   μ m ,
C = I tr / I op ,
Δ = i = 1 n I i - I av 2 n - 1 1 / 2 ,

Metrics