Abstract

In the process of recording a hologram of linearly polarized plane waves in azo-dye-colored films, a chaotic time-dependent oscillation of the diffraction efficiency of the hologram was observed. The oscillation was detected under conditions of constant intensities of the hologram recording waves.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kondo, “Über den Photoanisotropen Effect (Weigerteffect) an Farbenstoffen. I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).
  2. A. Teitel, Naturwissenschaften 44, 370–371 (1957).
  3. T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
    [CrossRef]
  4. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: a new high-efficiency organic material with reversible photo-induced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
    [CrossRef] [PubMed]
  5. K. Ikeda, H. Daido, O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
    [CrossRef]
  6. H. M. Gibbs, F. A. Hopf, D. L. Kaplan, R. L. Shoemaker, “Observation of chaos in optical bistability,” Phys. Rev. Lett. 46, 474–477 (1981).
    [CrossRef]
  7. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).
  8. J. Hajtó, J. Jánossy, A. Firth, “Explanation of the laser-induced oscillatory phenomenon in amorphous semiconductor films,” Philos. Mag. B 48, 311–321 (1983).
    [CrossRef]
  9. A. M. Makushenko, B. S. Neporent, O. A. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

1984 (1)

1983 (2)

J. Hajtó, J. Jánossy, A. Firth, “Explanation of the laser-induced oscillatory phenomenon in amorphous semiconductor films,” Philos. Mag. B 48, 311–321 (1983).
[CrossRef]

T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

1981 (1)

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, R. L. Shoemaker, “Observation of chaos in optical bistability,” Phys. Rev. Lett. 46, 474–477 (1981).
[CrossRef]

1980 (1)

K. Ikeda, H. Daido, O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
[CrossRef]

1971 (1)

A. M. Makushenko, B. S. Neporent, O. A. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

1957 (1)

A. Teitel, Naturwissenschaften 44, 370–371 (1957).

1932 (1)

T. Kondo, “Über den Photoanisotropen Effect (Weigerteffect) an Farbenstoffen. I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Akimoto, O.

K. Ikeda, H. Daido, O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
[CrossRef]

Daido, H.

K. Ikeda, H. Daido, O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
[CrossRef]

Firth, A.

J. Hajtó, J. Jánossy, A. Firth, “Explanation of the laser-induced oscillatory phenomenon in amorphous semiconductor films,” Philos. Mag. B 48, 311–321 (1983).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, R. L. Shoemaker, “Observation of chaos in optical bistability,” Phys. Rev. Lett. 46, 474–477 (1981).
[CrossRef]

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

Hajtó, J.

J. Hajtó, J. Jánossy, A. Firth, “Explanation of the laser-induced oscillatory phenomenon in amorphous semiconductor films,” Philos. Mag. B 48, 311–321 (1983).
[CrossRef]

Hopf, F. A.

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, R. L. Shoemaker, “Observation of chaos in optical bistability,” Phys. Rev. Lett. 46, 474–477 (1981).
[CrossRef]

Ikeda, K.

K. Ikeda, H. Daido, O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
[CrossRef]

Jánossy, J.

J. Hajtó, J. Jánossy, A. Firth, “Explanation of the laser-induced oscillatory phenomenon in amorphous semiconductor films,” Philos. Mag. B 48, 311–321 (1983).
[CrossRef]

Kaplan, D. L.

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, R. L. Shoemaker, “Observation of chaos in optical bistability,” Phys. Rev. Lett. 46, 474–477 (1981).
[CrossRef]

Kondo, T.

T. Kondo, “Über den Photoanisotropen Effect (Weigerteffect) an Farbenstoffen. I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Makushenko, A. M.

A. M. Makushenko, B. S. Neporent, O. A. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

Neporent, B. S.

A. M. Makushenko, B. S. Neporent, O. A. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

Nikolova, L.

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: a new high-efficiency organic material with reversible photo-induced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Shoemaker, R. L.

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, R. L. Shoemaker, “Observation of chaos in optical bistability,” Phys. Rev. Lett. 46, 474–477 (1981).
[CrossRef]

Stolbova, O. A.

A. M. Makushenko, B. S. Neporent, O. A. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

Teitel, A.

A. Teitel, Naturwissenschaften 44, 370–371 (1957).

Todorov, T.

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: a new high-efficiency organic material with reversible photo-induced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Tomova, N.

T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1: a new high-efficiency organic material with reversible photo-induced birefringence,” Appl. Opt. 23, 4309–4312 (1984).
[CrossRef] [PubMed]

T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Appl. Opt. (1)

Naturwissenschaften (1)

A. Teitel, Naturwissenschaften 44, 370–371 (1957).

Opt. Commun. (1)

T. Todorov, N. Tomova, L. Nikolova, “High-sensitivity material with reversible photo-induced anisotropy,” Opt. Commun. 47, 123–126 (1983).
[CrossRef]

Opt. Spectrosc. (USSR) (1)

A. M. Makushenko, B. S. Neporent, O. A. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

Philos. Mag. B (1)

J. Hajtó, J. Jánossy, A. Firth, “Explanation of the laser-induced oscillatory phenomenon in amorphous semiconductor films,” Philos. Mag. B 48, 311–321 (1983).
[CrossRef]

Phys. Rev. Lett. (2)

K. Ikeda, H. Daido, O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 709–712 (1980).
[CrossRef]

H. M. Gibbs, F. A. Hopf, D. L. Kaplan, R. L. Shoemaker, “Observation of chaos in optical bistability,” Phys. Rev. Lett. 46, 474–477 (1981).
[CrossRef]

Z. Wiss. Photogr. Photophys. Photochem. (1)

T. Kondo, “Über den Photoanisotropen Effect (Weigerteffect) an Farbenstoffen. I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Other (1)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Layout of the holographic experiment: A, argon laser; G, He–Ne laser; 1, beam from the argon laser; 2, semitransparent mirror; 3, mirror; 4, light-sensitive plate; 5, beam from the He–Ne laser; 6, photodetector.

Fig. 2
Fig. 2

Variations of the output signal of the photodetector with time. The two traces are for experiments performed with the same material over different intervals of time.

Metrics