Abstract

We propose and demonstrate, for the first time to our knowledge, a microlens array of the gradient-index type using a novel liquid-crystalline material that possesses the property of photopolymerization by UV irradiation. Optical and electrical properties of the UV-curable liquid crystal are investigated to optimize UV curing conditions. The microlens array is prepared by use of an UV-curable liquid crystal, and gradient-index profiles are monitored during photopolymerization. As a result, relatively good focusing and imaging properties can be obtained even after photopolymerization. This technique affords us a very controllable way to fabricate the micro-optic components.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, M. Oikawa, S. Misawa, J. Banno, Y. Kokubun, “Stacked planer optics: application of the planar microlens,” Appl. Opt. 21, 3456–3460 (1982).
    [CrossRef] [PubMed]
  2. Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55 (2), 97–99 (1989).
    [CrossRef]
  3. M. C. Hutley, “Optical techniques for generation of microlens array,” J. Mod. Opt. 37, 253–265 (1990).
    [CrossRef]
  4. T. Nose, S. Sato, “Liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
    [CrossRef]
  5. T. Nose, S. Masuda, S. Sato, “Liquid crystal microlens with hole-patterned electrode on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
    [CrossRef]
  6. S. Masuda, S. Takahashi, T. Nose, S. Sato, “Liquid-crystal microlenses with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
    [CrossRef] [PubMed]
  7. D. R. Haas, H.-T. Man, “Polymeric electro-optic modulators,” in Optical Computing, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 133.
  8. P. R. Ashley, T. A. Tumollilo, “A novel pulse-poling technique for EO polymer waveguide devices using device electrode poling,” IEEE Photon. Technol. Lett. 4, 142–145 (1992).
    [CrossRef]
  9. H. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
    [CrossRef]
  10. D. J. Broer, “Molecular architecture in thin plastic films by in-situ photopolymerization of reactive liquid crystals,” J. Soc. Inf. Display 3, 185–189 (1995).
    [CrossRef]
  11. H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceeding of Fourteenth International Display Research Conference, Monterey, Calif., 10–13 October 1994 (SID, Santa Monica, Calif.), p. 161.
  12. S. Masuda, T. Nose, S. Sato, “Visualization of director distributions by using a UV curable liquid crystal,” Jpn. J. Appl. Phys. 34, L1055–L1057 (1995).
    [CrossRef]
  13. S. Masuda, T. Nose, S. Sato, “Cross-sectional observations of the cholestric textures in a Cano wedge cell,” Liq. Cryst. 20 (5), 569–572 (1996).
  14. S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
    [CrossRef]
  15. P. G. de Genne, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, U.K., 1993), p. 139.
  16. H. Takatsu, S. Hasebe, “UV curable liquid crystals and their application,” in Liquid Crystals for Advanced Technologies, T. J. Bunning, S. H. Chen, W. Hawthorne, T. Kajiyama, N. Koide, eds., Vol. 425 of Material Research Society Symposium Proceedings (Material Research Society, Pittsburgh, Pa., 1996), pp. 293–303.

1997 (1)

1996 (2)

S. Masuda, T. Nose, S. Sato, “Cross-sectional observations of the cholestric textures in a Cano wedge cell,” Liq. Cryst. 20 (5), 569–572 (1996).

S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
[CrossRef]

1995 (2)

D. J. Broer, “Molecular architecture in thin plastic films by in-situ photopolymerization of reactive liquid crystals,” J. Soc. Inf. Display 3, 185–189 (1995).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Visualization of director distributions by using a UV curable liquid crystal,” Jpn. J. Appl. Phys. 34, L1055–L1057 (1995).
[CrossRef]

1993 (1)

H. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
[CrossRef]

1992 (2)

T. Nose, S. Masuda, S. Sato, “Liquid crystal microlens with hole-patterned electrode on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

P. R. Ashley, T. A. Tumollilo, “A novel pulse-poling technique for EO polymer waveguide devices using device electrode poling,” IEEE Photon. Technol. Lett. 4, 142–145 (1992).
[CrossRef]

1990 (1)

M. C. Hutley, “Optical techniques for generation of microlens array,” J. Mod. Opt. 37, 253–265 (1990).
[CrossRef]

1989 (2)

T. Nose, S. Sato, “Liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55 (2), 97–99 (1989).
[CrossRef]

1982 (1)

Ashley, P. R.

P. R. Ashley, T. A. Tumollilo, “A novel pulse-poling technique for EO polymer waveguide devices using device electrode poling,” IEEE Photon. Technol. Lett. 4, 142–145 (1992).
[CrossRef]

Banno, J.

Broer, D. J.

D. J. Broer, “Molecular architecture in thin plastic films by in-situ photopolymerization of reactive liquid crystals,” J. Soc. Inf. Display 3, 185–189 (1995).
[CrossRef]

de Genne, P. G.

P. G. de Genne, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, U.K., 1993), p. 139.

Diadiuk, V.

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55 (2), 97–99 (1989).
[CrossRef]

Haas, D. R.

D. R. Haas, H.-T. Man, “Polymeric electro-optic modulators,” in Optical Computing, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 133.

Hasebe, H.

H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceeding of Fourteenth International Display Research Conference, Monterey, Calif., 10–13 October 1994 (SID, Santa Monica, Calif.), p. 161.

Hasebe, S.

H. Takatsu, S. Hasebe, “UV curable liquid crystals and their application,” in Liquid Crystals for Advanced Technologies, T. J. Bunning, S. H. Chen, W. Hawthorne, T. Kajiyama, N. Koide, eds., Vol. 425 of Material Research Society Symposium Proceedings (Material Research Society, Pittsburgh, Pa., 1996), pp. 293–303.

Hida, H.

H. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
[CrossRef]

Hutley, M. C.

M. C. Hutley, “Optical techniques for generation of microlens array,” J. Mod. Opt. 37, 253–265 (1990).
[CrossRef]

Iga, K.

Imamura, S.

H. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
[CrossRef]

Kokubun, Y.

Liau, Z. L.

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55 (2), 97–99 (1989).
[CrossRef]

Man, H.-T.

D. R. Haas, H.-T. Man, “Polymeric electro-optic modulators,” in Optical Computing, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 133.

Masuda, S.

S. Masuda, S. Takahashi, T. Nose, S. Sato, “Liquid-crystal microlenses with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
[CrossRef] [PubMed]

S. Masuda, T. Nose, S. Sato, “Cross-sectional observations of the cholestric textures in a Cano wedge cell,” Liq. Cryst. 20 (5), 569–572 (1996).

S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Visualization of director distributions by using a UV curable liquid crystal,” Jpn. J. Appl. Phys. 34, L1055–L1057 (1995).
[CrossRef]

T. Nose, S. Masuda, S. Sato, “Liquid crystal microlens with hole-patterned electrode on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

Misawa, S.

Mull, D. E.

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55 (2), 97–99 (1989).
[CrossRef]

Nose, T.

S. Masuda, S. Takahashi, T. Nose, S. Sato, “Liquid-crystal microlenses with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
[CrossRef] [PubMed]

S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Cross-sectional observations of the cholestric textures in a Cano wedge cell,” Liq. Cryst. 20 (5), 569–572 (1996).

S. Masuda, T. Nose, S. Sato, “Visualization of director distributions by using a UV curable liquid crystal,” Jpn. J. Appl. Phys. 34, L1055–L1057 (1995).
[CrossRef]

T. Nose, S. Masuda, S. Sato, “Liquid crystal microlens with hole-patterned electrode on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

T. Nose, S. Sato, “Liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Oikawa, M.

Onose, H.

H. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
[CrossRef]

Prost, J.

P. G. de Genne, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, U.K., 1993), p. 139.

Sato, S.

S. Masuda, S. Takahashi, T. Nose, S. Sato, “Liquid-crystal microlenses with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997).
[CrossRef] [PubMed]

S. Masuda, T. Nose, S. Sato, “Cross-sectional observations of the cholestric textures in a Cano wedge cell,” Liq. Cryst. 20 (5), 569–572 (1996).

S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Visualization of director distributions by using a UV curable liquid crystal,” Jpn. J. Appl. Phys. 34, L1055–L1057 (1995).
[CrossRef]

T. Nose, S. Masuda, S. Sato, “Liquid crystal microlens with hole-patterned electrode on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

T. Nose, S. Sato, “Liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Takahashi, S.

Takatsu, H.

H. Takatsu, S. Hasebe, “UV curable liquid crystals and their application,” in Liquid Crystals for Advanced Technologies, T. J. Bunning, S. H. Chen, W. Hawthorne, T. Kajiyama, N. Koide, eds., Vol. 425 of Material Research Society Symposium Proceedings (Material Research Society, Pittsburgh, Pa., 1996), pp. 293–303.

H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceeding of Fourteenth International Display Research Conference, Monterey, Calif., 10–13 October 1994 (SID, Santa Monica, Calif.), p. 161.

Takeuchi, K.

H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceeding of Fourteenth International Display Research Conference, Monterey, Calif., 10–13 October 1994 (SID, Santa Monica, Calif.), p. 161.

Tumollilo, T. A.

P. R. Ashley, T. A. Tumollilo, “A novel pulse-poling technique for EO polymer waveguide devices using device electrode poling,” IEEE Photon. Technol. Lett. 4, 142–145 (1992).
[CrossRef]

Walpole, J. N.

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55 (2), 97–99 (1989).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55 (2), 97–99 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. R. Ashley, T. A. Tumollilo, “A novel pulse-poling technique for EO polymer waveguide devices using device electrode poling,” IEEE Photon. Technol. Lett. 4, 142–145 (1992).
[CrossRef]

H. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993).
[CrossRef]

J. Mod. Opt. (1)

M. C. Hutley, “Optical techniques for generation of microlens array,” J. Mod. Opt. 37, 253–265 (1990).
[CrossRef]

J. Soc. Inf. Display (1)

D. J. Broer, “Molecular architecture in thin plastic films by in-situ photopolymerization of reactive liquid crystals,” J. Soc. Inf. Display 3, 185–189 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (3)

S. Masuda, T. Nose, S. Sato, “Visualization of director distributions by using a UV curable liquid crystal,” Jpn. J. Appl. Phys. 34, L1055–L1057 (1995).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996).
[CrossRef]

T. Nose, S. Masuda, S. Sato, “Liquid crystal microlens with hole-patterned electrode on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992).
[CrossRef]

Liq. Cryst. (2)

S. Masuda, T. Nose, S. Sato, “Cross-sectional observations of the cholestric textures in a Cano wedge cell,” Liq. Cryst. 20 (5), 569–572 (1996).

T. Nose, S. Sato, “Liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Other (4)

H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceeding of Fourteenth International Display Research Conference, Monterey, Calif., 10–13 October 1994 (SID, Santa Monica, Calif.), p. 161.

D. R. Haas, H.-T. Man, “Polymeric electro-optic modulators,” in Optical Computing, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 133.

P. G. de Genne, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, U.K., 1993), p. 139.

H. Takatsu, S. Hasebe, “UV curable liquid crystals and their application,” in Liquid Crystals for Advanced Technologies, T. J. Bunning, S. H. Chen, W. Hawthorne, T. Kajiyama, N. Koide, eds., Vol. 425 of Material Research Society Symposium Proceedings (Material Research Society, Pittsburgh, Pa., 1996), pp. 293–303.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Structure and molecular-orientation model of the LC microlens.

Fig. 2
Fig. 2

Experimental setup for the measurement of the optical properties of an UV-curable LC microlens array.

Fig. 3
Fig. 3

Time-dependence properties of the change in the capacitance and the resistance during the UV-curing process.

Fig. 4
Fig. 4

Transmission spectra through UV-cured LC cells with different UV-light intensities for the curing process.

Fig. 5
Fig. 5

Transmission spectra through UV-cured LC cells at various temperatures for the UV-curing process.

Fig. 6
Fig. 6

Transmission spectra through UV-cured LC cells with different irradiation times for the UV-curing process.

Fig. 7
Fig. 7

Changes of the interference-fringe patterns in UV-cured LC microlenses during the UV-curing process: (a) Before UV irradiation. (b) Ten seconds after irradiation. (c) After photopolymerization.

Fig. 8
Fig. 8

Refractive-index distribution properties of an UV-cured LC microlens while photopolymerization proceeds. Diameter of holes in pattern, 600 μm; cell thickness, 200 μm.

Fig. 9
Fig. 9

Typical focusing properties of LC microlenses with UV-curable LC materials (a) before and (b) after photopolymerization. The diameter of the hole pattern is 300 μm, and the cell thickness is 100 μm.

Fig. 10
Fig. 10

Typical focusing and imaging properties of a UV-cured LC microlens array. The diameter of the hole pattern and the cell thickness are 300 and 40 μm, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d 0.5   λ NA ,

Metrics