Abstract

We present an architecture in which a multichannel correlator can perform simultaneous optical pattern recognition. Processing in parallel is made possible by use of the different diffraction orders produced by the pixelated structure of the liquid-crystal spatial light modulator employed to display the input scene. We codify additional quadratic phases in the filters to separate the correlation information corresponding to each channel. We demonstrate that the system can recognize different targets simultaneously. Good agreement between experimental and numerically simulated results is obtained.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  2. S. Case, “Pattern recognition with wavelength-multiplexed filters,” Appl. Opt. 18, 1890–1894 (1979).
    [CrossRef] [PubMed]
  3. C. Warde, H. Caulfield, F. Yu, J. Ludman, “Real-time joint spectral-spatial matched filtering,” Opt. Commun. 49, 241–244 (1984).
    [CrossRef]
  4. Y. Sheng, T. Lu, D. Roberge, H. Caulfield, “Optical N4 implementation of a two-dimensional wavelet transform,” Opt. Eng. 31, 1859–1864 (1992).
    [CrossRef]
  5. D. Mendlovic, I. Ouzieli, I. Kiryuschev, E. Marom, “Two-dimensional wavelet transform achieved by computer-generated multireference matched filter and Damman grating,” Appl. Opt. 34, 8213–8219 (1995).
    [CrossRef] [PubMed]
  6. F. T. S. Yu, Q. Zhou, C. Zhang, “Multiple channel optical correlator via rotating grating on LCTV,” Appl. Opt. 27, 3770–3772 (1988).
    [CrossRef] [PubMed]
  7. J. Upatnieks, O. Abshier, C. R. Christensen, J. Stensby, “Multiple Fourier transform generation for coherent optical correlators,” Appl. Opt. 29, 1589–1590 (1990).
    [CrossRef] [PubMed]
  8. J. Kirsch, D. Gregory, M. Thie, B. Jones, “Modulation characteristic of Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
    [CrossRef]
  9. Ph. Réfrégier, “Filter design for optical pattern recognition: multicriteria optimization approach,” Opt. Lett. 15, 854–856 (1990).
    [CrossRef]
  10. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984).
    [CrossRef] [PubMed]
  11. D. Casasent, “Unified synthetic discriminant function computational formulation,” Appl. Opt. 23, 1620–1627 (1984).
    [CrossRef] [PubMed]
  12. W. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979).
    [CrossRef] [PubMed]

1995 (1)

1992 (2)

Y. Sheng, T. Lu, D. Roberge, H. Caulfield, “Optical N4 implementation of a two-dimensional wavelet transform,” Opt. Eng. 31, 1859–1864 (1992).
[CrossRef]

J. Kirsch, D. Gregory, M. Thie, B. Jones, “Modulation characteristic of Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

1990 (2)

1988 (1)

1984 (3)

1979 (2)

1964 (1)

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Abshier, O.

Casasent, D.

Case, S.

Caulfield, H.

Y. Sheng, T. Lu, D. Roberge, H. Caulfield, “Optical N4 implementation of a two-dimensional wavelet transform,” Opt. Eng. 31, 1859–1864 (1992).
[CrossRef]

C. Warde, H. Caulfield, F. Yu, J. Ludman, “Real-time joint spectral-spatial matched filtering,” Opt. Commun. 49, 241–244 (1984).
[CrossRef]

Christensen, C. R.

Gianino, P. D.

Gregory, D.

J. Kirsch, D. Gregory, M. Thie, B. Jones, “Modulation characteristic of Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Horner, J. L.

Jones, B.

J. Kirsch, D. Gregory, M. Thie, B. Jones, “Modulation characteristic of Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Kirsch, J.

J. Kirsch, D. Gregory, M. Thie, B. Jones, “Modulation characteristic of Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Kiryuschev, I.

Lee, W.

Lu, T.

Y. Sheng, T. Lu, D. Roberge, H. Caulfield, “Optical N4 implementation of a two-dimensional wavelet transform,” Opt. Eng. 31, 1859–1864 (1992).
[CrossRef]

Ludman, J.

C. Warde, H. Caulfield, F. Yu, J. Ludman, “Real-time joint spectral-spatial matched filtering,” Opt. Commun. 49, 241–244 (1984).
[CrossRef]

Marom, E.

Mendlovic, D.

Ouzieli, I.

Réfrégier, Ph.

Roberge, D.

Y. Sheng, T. Lu, D. Roberge, H. Caulfield, “Optical N4 implementation of a two-dimensional wavelet transform,” Opt. Eng. 31, 1859–1864 (1992).
[CrossRef]

Sheng, Y.

Y. Sheng, T. Lu, D. Roberge, H. Caulfield, “Optical N4 implementation of a two-dimensional wavelet transform,” Opt. Eng. 31, 1859–1864 (1992).
[CrossRef]

Stensby, J.

Thie, M.

J. Kirsch, D. Gregory, M. Thie, B. Jones, “Modulation characteristic of Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Upatnieks, J.

VanderLugt, A.

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Warde, C.

C. Warde, H. Caulfield, F. Yu, J. Ludman, “Real-time joint spectral-spatial matched filtering,” Opt. Commun. 49, 241–244 (1984).
[CrossRef]

Yu, F.

C. Warde, H. Caulfield, F. Yu, J. Ludman, “Real-time joint spectral-spatial matched filtering,” Opt. Commun. 49, 241–244 (1984).
[CrossRef]

Yu, F. T. S.

Zhang, C.

Zhou, Q.

Appl. Opt. (7)

IEEE Trans. Inf. Theory (1)

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Opt. Commun. (1)

C. Warde, H. Caulfield, F. Yu, J. Ludman, “Real-time joint spectral-spatial matched filtering,” Opt. Commun. 49, 241–244 (1984).
[CrossRef]

Opt. Eng. (2)

Y. Sheng, T. Lu, D. Roberge, H. Caulfield, “Optical N4 implementation of a two-dimensional wavelet transform,” Opt. Eng. 31, 1859–1864 (1992).
[CrossRef]

J. Kirsch, D. Gregory, M. Thie, B. Jones, “Modulation characteristic of Epson liquid crystal television,” Opt. Eng. 31, 963–970 (1992).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Architecture of the convergent optical multichannel correlator.

Fig. 2
Fig. 2

(a) Input scene; (b), (c), and (d) numerical simulated correlations in channels 1, 0, and -1, respectively; (e), (f), and (g) experimental correlations in channels 1, 0, and -1, respectively.

Fig. 3
Fig. 3

Intensity distribution recorded by the videocamera on the output plane.

Metrics