Abstract

We present a method for the noninvasive determination of the size, position, and optical properties (absorption and reduced scattering coefficients) of tumors in the human breast. The tumor is first detected by frequency-domain optical mammography. It is then sized, located, and optically characterized by use of diffusion theory as a model for the propagation of near-infrared light in breast tissue. Our method assumes that the tumor is a spherical inhomogeneity embedded in an otherwise homogeneous tissue. We report the results obtained on a 55-year-old patient with a papillary cancer in the right breast. We found that the tumor absorbs and scatters near-infrared light more strongly than the surrounding healthy tissue. Our method has yielded a tumor diameter of 2.1 ± 0.2 cm, which is comparable with the actual size of 1.6 cm, determined after surgery. From the tumor absorption coefficients at two wavelengths (690 and 825 nm), we calculated the total hemoglobin concentration (40 ± 10 μM) and saturation (71 ± 9%) of the tumor. These results can provide the clinical examiner with more detailed information about breast lesions detected by frequency-domain optical mammography, thereby enhancing its potential for specificity.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–727 (1929).
  2. C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
    [PubMed]
  3. E. Carlsen, “Transillumination light scanning,” Diagn. Imaging 4, 28–34 (1982).
  4. A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
    [CrossRef] [PubMed]
  5. Y. Yamashita, M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1993), pp. 283–316.
  6. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  7. H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, M. Kaschke, “Intensity-modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 126–129.
  8. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, (2)(1998).
    [CrossRef]
  9. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
    [CrossRef] [PubMed]
  10. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
    [CrossRef] [PubMed]
  11. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  12. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  13. The Photon Migration Imaging code is available on the World Wide Web at http://dpdw.eotc.tufts.edu/boas/PMI/pmi.html . The developers of the code are D. Boas, X. Li, M. O’Leary, B. Chance, A. Yodh, M. Ostermeyer, S. Jacques, G. Nishimura, S. Walker .
  14. B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
    [CrossRef]
  15. H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
    [CrossRef] [PubMed]
  16. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2302 (1989).
    [CrossRef] [PubMed]
  17. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
    [CrossRef] [PubMed]
  18. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxigenation,” Anal. Biochem. 195, 330–351 (1991).
    [CrossRef] [PubMed]
  19. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
    [CrossRef]
  20. W. W. Mantulin, S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 323–330 (1995).
    [CrossRef]
  21. S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).
    [CrossRef]
  22. A. Yodh, “The American experience in optical mammography,” presented at the conference on Breast Cancer Detection by Near Infrared Spectroscopy and Imaging, Berlin, Germany, 6–7 June 1997.
  23. J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).
    [CrossRef]
  24. X. Wu, L. Stinger, G. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997).
    [CrossRef]
  25. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
    [CrossRef] [PubMed]
  26. G. Ledanois, J. Virmont, “Optical medical diagnostic and imaging,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 405–408 (1998).
    [CrossRef]
  27. T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef]
  28. K. A. Kang, B. Chance, S. Zhao, S. Srinivasan, E. Patterson, R. Troupin, “Breast tumor characterization using near-infra-red spectroscopy,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 487–499 (1993).
    [CrossRef]
  29. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
    [CrossRef] [PubMed]
  30. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
    [CrossRef]

1998

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, (2)(1998).
[CrossRef]

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

1997

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

1996

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

1995

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

1994

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

1992

T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

1991

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxigenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

1990

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

1989

1982

E. Carlsen, “Transillumination light scanning,” Diagn. Imaging 4, 28–34 (1982).

1972

C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

1929

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–727 (1929).

Åkesson, P.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Alveryd, A.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Anderson, E. R.

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Andersson, I.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Aspegren, K.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Balldin, G.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Barbieri, B.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Bjurstam, N.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Bolin, F. P.

Brenner, M.

Butler, J.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Carlsen, E.

E. Carlsen, “Transillumination light scanning,” Diagn. Imaging 4, 28–34 (1982).

Chance, B.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxigenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).
[CrossRef]

K. A. Kang, B. Chance, S. Zhao, S. Srinivasan, E. Patterson, R. Troupin, “Breast tumor characterization using near-infra-red spectroscopy,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 487–499 (1993).
[CrossRef]

Colak, S. B.

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).
[CrossRef]

Coquoz, O.

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cutler, M.

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–727 (1929).

Edström, G.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Erdl, H.

H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, M. Kaschke, “Intensity-modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 126–129.

Fagerberg, G.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Fantini, S.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, (2)(1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, M. Kaschke, “Intensity-modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 126–129.

W. W. Mantulin, S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 323–330 (1995).
[CrossRef]

Faris, G.

X. Wu, L. Stinger, G. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997).
[CrossRef]

Farrel, T. J.

T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Feddersen, B. A.

B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
[CrossRef]

Feng, T. C.

Ference, R. J.

Ferrari, M.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Fishkin, J. B.

J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Franceschini, M. A.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, (2)(1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

W. W. Mantulin, S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 323–330 (1995).
[CrossRef]

H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, M. Kaschke, “Intensity-modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 126–129.

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Glas, U.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
[CrossRef]

H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, M. Kaschke, “Intensity-modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 126–129.

W. W. Mantulin, S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 323–330 (1995).
[CrossRef]

Gros, C. M.

C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Hallberg, D.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Haskell, R. C.

Heusmann, H.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Hooft, G. W.’t

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).
[CrossRef]

Hoogenraad, J. H.

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).
[CrossRef]

Hummel, Y.

C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Jarlman, O.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Jess, H.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, (2)(1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, M. Kaschke, “Intensity-modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 126–129.

Kaneko, M.

Y. Yamashita, M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1993), pp. 283–316.

Kang, K. A.

K. A. Kang, B. Chance, S. Zhao, S. Srinivasan, E. Patterson, R. Troupin, “Breast tumor characterization using near-infra-red spectroscopy,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 487–499 (1993).
[CrossRef]

Kaschke, M

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, (2)(1998).
[CrossRef]

Kaschke, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, M. Kaschke, “Intensity-modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 126–129.

Kölzer, J.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Larsson, S. A.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Ledanois, G.

G. Ledanois, J. Virmont, “Optical medical diagnostic and imaging,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 405–408 (1998).
[CrossRef]

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxigenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Lidbrink, E.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Lingaas, H.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Liu, H.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).
[CrossRef]

Löfgren, M.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Maier, J. S.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

W. W. Mantulin, S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 323–330 (1995).
[CrossRef]

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

W. W. Mantulin, S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 323–330 (1995).
[CrossRef]

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxigenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Matcher, S. J.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

McAdams, M. S.

Mitic, G.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Moesta, K. T.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, (2)(1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, M. Kaschke, “Intensity-modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 126–129.

Nioka, S.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxigenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).
[CrossRef]

O’Leary, M. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Patterson, E.

K. A. Kang, B. Chance, S. Zhao, S. Srinivasan, E. Patterson, R. Troupin, “Breast tumor characterization using near-infra-red spectroscopy,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 487–499 (1993).
[CrossRef]

Patterson, M. S.

T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Piston, D. W.

B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
[CrossRef]

Preuss, L. E.

Quaresima, V.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Quenneville, Y.

C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Rudenstam, C.-M.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Samuelsson, L.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Schlag, P. M.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, (2)(1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxigenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Srinivasan, S.

K. A. Kang, B. Chance, S. Zhao, S. Srinivasan, E. Patterson, R. Troupin, “Breast tumor characterization using near-infra-red spectroscopy,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 487–499 (1993).
[CrossRef]

Stinger, L.

X. Wu, L. Stinger, G. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997).
[CrossRef]

Strender, L.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Svaasand, L. O.

Tabàr, L.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Taube, A.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Taylor, R. C.

Totkas, S.

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, (2)(1998).
[CrossRef]

Tromberg, B. J.

Troupin, R.

K. A. Kang, B. Chance, S. Zhao, S. Srinivasan, E. Patterson, R. Troupin, “Breast tumor characterization using near-infra-red spectroscopy,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 487–499 (1993).
[CrossRef]

Tsay, T. T.

van der Linden, E. S.

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).
[CrossRef]

van der Mark, M. B.

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).
[CrossRef]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Virmont, J.

G. Ledanois, J. Virmont, “Optical medical diagnostic and imaging,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 405–408 (1998).
[CrossRef]

Walker, S. A.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

W. W. Mantulin, S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 323–330 (1995).
[CrossRef]

Wallberg, H.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Wilson, B. C.

Wu, X.

X. Wu, L. Stinger, G. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997).
[CrossRef]

Xie, C.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).
[CrossRef]

Yamashita, Y.

Y. Yamashita, M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1993), pp. 283–316.

Yodh, A.

A. Yodh, “The American experience in optical mammography,” presented at the conference on Breast Cancer Detection by Near Infrared Spectroscopy and Imaging, Berlin, Germany, 6–7 June 1997.

Yodh, A. G.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Zhang, Y.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).
[CrossRef]

Zhao, S.

K. A. Kang, B. Chance, S. Zhao, S. Srinivasan, E. Patterson, R. Troupin, “Breast tumor characterization using near-infra-red spectroscopy,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 487–499 (1993).
[CrossRef]

Zhou, S.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).
[CrossRef]

Anal. Biochem.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxigenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Appl. Opt.

Cancer

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Diagn. Imaging

E. Carlsen, “Transillumination light scanning,” Diagn. Imaging 4, 28–34 (1982).

J. Biomed. Opt.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M Kaschke, P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3, (2)(1998).
[CrossRef]

J. Opt. Soc. Am. A

J. Radiol. Electrol. Med. Nucl.

C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Med. Phys.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

T. J. Farrel, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Opt. Eng.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Photochem. Photobiol.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

B. A. Feddersen, D. W. Piston, E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
[CrossRef]

Surg. Gynecol. Obstet.

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–727 (1929).

Other

Y. Yamashita, M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1993), pp. 283–316.

H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, M. Kaschke, “Intensity-modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 126–129.

W. W. Mantulin, S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 323–330 (1995).
[CrossRef]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).
[CrossRef]

A. Yodh, “The American experience in optical mammography,” presented at the conference on Breast Cancer Detection by Near Infrared Spectroscopy and Imaging, Berlin, Germany, 6–7 June 1997.

J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).
[CrossRef]

X. Wu, L. Stinger, G. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 300–306 (1997).
[CrossRef]

The Photon Migration Imaging code is available on the World Wide Web at http://dpdw.eotc.tufts.edu/boas/PMI/pmi.html . The developers of the code are D. Boas, X. Li, M. O’Leary, B. Chance, A. Yodh, M. Ostermeyer, S. Jacques, G. Nishimura, S. Walker .

G. Ledanois, J. Virmont, “Optical medical diagnostic and imaging,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 405–408 (1998).
[CrossRef]

K. A. Kang, B. Chance, S. Zhao, S. Srinivasan, E. Patterson, R. Troupin, “Breast tumor characterization using near-infra-red spectroscopy,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 487–499 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the frequency-domain LIMA. The two light sources are laser diodes emitting at 690 and 825 nm. Their intensities are modulated at a frequency of 110.001 MHz and 110.0008 MHz, respectively, by a radio-frequency (rf) oscillator. The two laser beams are collimated and made collinear, and they illuminate one side of the compressed breast. L is the separation between the plates for breast compression. On the opposite side of the breast, an optical fiber collects the optical signal and sends it to the PMT detector. The PMT gain is modulated at a frequency of 110 MHz to provide a beating with the frequencies of the detected signals at the two wavelengths. The data processing, which is synchronized (Synch.) with the rf oscillator, consists of recovering the amplitude and phase information at the two wavelengths and of applying the algorithm for edge effect corrections. The frequency-domain optical mammogram is displayed on the screen in real time during the exam.

Fig. 2
Fig. 2

Frequency-domain optical mammograms [(a), 690 nm; (b), 825 nm] of the right breast (mediolateral projection) of a 55-year-old patient affected by breast cancer. The tumor location is indicated by the white arrow. The scanned line at y = 0, indicated in the figures, is considered for the application of our method aimed at the optical characterization of the tumor.

Fig. 3
Fig. 3

(a) Filled triangles represent the experimental ac amplitude and (b) solid circles represent the phase at 690 nm measured along the scanned line indicated in Fig. 2(a). The tumor is centered at x (t) = 4.9 cm. The continuous curves are the fits of a smooth function to the experimental data out of the tumor region. We considered four different phase curves (labeled 1–4 in (b)] to estimate the sensitivity of our method to a particular choice for the background phase.

Fig. 4
Fig. 4

(a) Filled triangles represent the experimental ac amplitude and (b) filled circles represent the phase at 825 nm measured along the scanned line indicated in Fig. 2(b). The tumor is centered at x (t) = 4.9 cm. The continuous curves are the fits of a smooth function to the experimental data out of the tumor region. We considered four different phase curves [labeled 5–8 in (b)] to estimate the sensitivity of our method to a particular choice for the background phase.

Fig. 6
Fig. 6

Normalized data at 825 nm and fits with the analytical solution for the sphere-in-slab problem (curves). (a) ac, solid triangles; (b) phase, solid circles. The four fits [numbered 5–8 in (a) and (b)] correspond to the four different background phase curves shown in Fig. 4(b). In (a), the ac data and fits numbered 5, 6, and 7 were shifted by 0.6, 0.4, and 0.2 a.u., respectively, for clarity. In (b), the phase data and fits numbered 5, 6, and 7 were shifted by 9, 6, and 3 deg, respectively, for clarity.

Fig. 5
Fig. 5

Normalized data at 690 nm and fits with the analytical solution for the sphere-in-slab problem (curves). (a) ac, solid triangles; (b) phase, solid circles. The four fits [numbered 1–4 in (a) and (b)] correspond to the four different background phase curves shown in Fig. 3(b). In (a), the ac data and fits numbered 1, 2, and 3 were shifted by 0.6, 0.4, and 0.2 a.u., respectively, for clarity. In (b), the phase data and fits numbered 1, 2, and 3 were shifted by 9, 6, and 3 deg, respectively, for clarity.

Tables (3)

Tables Icon

Table 1 Assumed Values of the Absorption Coefficient (μa0), Reduced Scattering Coefficient (μs0′), and Refractive Index (n0) of the Background, Healthy Breast Tissue at the Two Wavelengths Considereda

Tables Icon

Table 2 Values of the Fitted Parameters for the Eight Fits Performeda

Tables Icon

Table 3 Size, Position, Optical Coefficients, Hemoglobin Concentration, and Hemoglobin Saturation of the Breast Tumor (a papillary cancer) Obtained in vivo with our Noninvasive Optical Method

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U scatt = l , m   A l , m j l k 0 r + in l k 0 r Y l , m θ ,   φ ,

Metrics