Abstract

We present an analytical solution for the scattering of diffuse photon density waves from an infinite circular, cylindrical inhomogeneity embedded in a homogeneous highly scattering turbid medium. The analytical solution, based on the diffusion approximation of the Boltzmann transport equation, represents the contribution of the cylindrical inhomogeneity as a series of modified Bessel functions integrated from zero to infinity and weighted by different angular dependencies. This series is truncated at the desired precision, similar to the Mie theory. We introduce new boundary conditions that account for specular reflections at the interface between the background medium and the cylindrical inhomogeneity. These new boundary conditions allow the separate recovery of the index of refraction of an object from its absorption and reduced scattering coefficients. The analytical solution is compared with data obtained experimentally to evaluate the predictive capability of the model. Optical properties of known cylindrical objects are recovered accurately. However, as the radius of the cylinder decreases, the required measurement signal-to-noise ratio rapidly increases. Because of the new boundary conditions, an upper limit can be placed on the recovered size of cylindrical objects with radii below 0.3 cm if they have a substantially different index of refraction from that of the background medium.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription