Abstract

The properties of 4-mm-diameter and 7-mm-diameter liquid-nitrogen-cooled indium antimonide detectors were investigated to determine their suitability as transfer standards (i.e., reference detectors) for the detector calibration facility at the National Research Council of Canada. The spectral responsivity of the InSb detectors in the spectral range 1000–3000 nm was determined by a two-step procedure involving the use of germanium transfer standards and suitably characterized thermopiles. It is shown that the long-term reproducibility of the InSb detector calibrations is approximately ±1%. The uniformity and linearity as a function of wavelength, as well as the background current noise and drift of the two detectors, are compared. It is shown that the 7-mm-diameter detector is clearly superior to the 4-mm one for use as a transfer standard. It is estimated that the overall accuracy of the calibrations of the two InSb detectors is ±2% in the range 1200–2800 nm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. P. Boivin, K. Gibb, “Monochromator-based cryogenic radiometry at the NRC,” Metrologia. 32, 565–570 (1995/1996).
    [CrossRef]
  2. R. Köhler, R. Goebel, R. Pello, “Results of an international comparison of spectral responsivity of silicon photodetectors,” Metrologia. 32, 463–468 (1995/1996).
    [CrossRef]
  3. L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the New Candela (1979) at NRC,” Metrologia. 24, 139–152 (1987).
    [CrossRef]
  4. J. Campos, A. Corrons, A. Pons, R. Corredera, “Realization of the candela from a partial filtering V(λ) detector traceable to a cryogenic radiometer,” Metrologia. 32, 675–679 (1995/1996).
    [CrossRef]
  5. C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
    [CrossRef]
  6. W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Statist. Assoc. 74, 829–836 (1979).
    [CrossRef]
  7. L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia. 30, 355–360 (1993).
    [CrossRef]

1996 (1)

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

1993 (1)

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia. 30, 355–360 (1993).
[CrossRef]

1987 (1)

L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the New Candela (1979) at NRC,” Metrologia. 24, 139–152 (1987).
[CrossRef]

1979 (1)

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Statist. Assoc. 74, 829–836 (1979).
[CrossRef]

Boivin, L. P.

L. P. Boivin, K. Gibb, “Monochromator-based cryogenic radiometry at the NRC,” Metrologia. 32, 565–570 (1995/1996).
[CrossRef]

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia. 30, 355–360 (1993).
[CrossRef]

L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the New Candela (1979) at NRC,” Metrologia. 24, 139–152 (1987).
[CrossRef]

Campos, J.

J. Campos, A. Corrons, A. Pons, R. Corredera, “Realization of the candela from a partial filtering V(λ) detector traceable to a cryogenic radiometer,” Metrologia. 32, 675–679 (1995/1996).
[CrossRef]

Cleveland, W. S.

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Statist. Assoc. 74, 829–836 (1979).
[CrossRef]

Corredera, R.

J. Campos, A. Corrons, A. Pons, R. Corredera, “Realization of the candela from a partial filtering V(λ) detector traceable to a cryogenic radiometer,” Metrologia. 32, 675–679 (1995/1996).
[CrossRef]

Corrons, A.

J. Campos, A. Corrons, A. Pons, R. Corredera, “Realization of the candela from a partial filtering V(λ) detector traceable to a cryogenic radiometer,” Metrologia. 32, 675–679 (1995/1996).
[CrossRef]

Cromer, C. L.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Eppeldauer, G.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Gaertner, A. A.

L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the New Candela (1979) at NRC,” Metrologia. 24, 139–152 (1987).
[CrossRef]

Gibb, K.

L. P. Boivin, K. Gibb, “Monochromator-based cryogenic radiometry at the NRC,” Metrologia. 32, 565–570 (1995/1996).
[CrossRef]

Gignac, D. S.

L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the New Candela (1979) at NRC,” Metrologia. 24, 139–152 (1987).
[CrossRef]

Goebel, R.

R. Köhler, R. Goebel, R. Pello, “Results of an international comparison of spectral responsivity of silicon photodetectors,” Metrologia. 32, 463–468 (1995/1996).
[CrossRef]

Hardis, J. E.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Köhler, R.

R. Köhler, R. Goebel, R. Pello, “Results of an international comparison of spectral responsivity of silicon photodetectors,” Metrologia. 32, 463–468 (1995/1996).
[CrossRef]

Larason, T. C.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Ohno, Y.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Parr, A. C.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Pello, R.

R. Köhler, R. Goebel, R. Pello, “Results of an international comparison of spectral responsivity of silicon photodetectors,” Metrologia. 32, 463–468 (1995/1996).
[CrossRef]

Pons, A.

J. Campos, A. Corrons, A. Pons, R. Corredera, “Realization of the candela from a partial filtering V(λ) detector traceable to a cryogenic radiometer,” Metrologia. 32, 675–679 (1995/1996).
[CrossRef]

J. Am. Statist. Assoc. (1)

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Statist. Assoc. 74, 829–836 (1979).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, Y. Ohno, A. C. Parr, “The NIST detector-based luminous intensity scale,” J. Res. Natl. Inst. Stand. Technol. 101, 109–132 (1996).
[CrossRef]

Metrologia. (5)

L. P. Boivin, “Automated absolute and relative spectral linearity measurements on photovoltaic detectors,” Metrologia. 30, 355–360 (1993).
[CrossRef]

L. P. Boivin, K. Gibb, “Monochromator-based cryogenic radiometry at the NRC,” Metrologia. 32, 565–570 (1995/1996).
[CrossRef]

R. Köhler, R. Goebel, R. Pello, “Results of an international comparison of spectral responsivity of silicon photodetectors,” Metrologia. 32, 463–468 (1995/1996).
[CrossRef]

L. P. Boivin, A. A. Gaertner, D. S. Gignac, “Realization of the New Candela (1979) at NRC,” Metrologia. 24, 139–152 (1987).
[CrossRef]

J. Campos, A. Corrons, A. Pons, R. Corredera, “Realization of the candela from a partial filtering V(λ) detector traceable to a cryogenic radiometer,” Metrologia. 32, 675–679 (1995/1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the apparatus used at the NRC for routine spectral responsivity measurements.

Fig. 2
Fig. 2

Output power as a function of wavelength for the monochromator and optics shown in Fig. 1 for various source and grating combinations. VIS, visible; FIR, far infrared.

Fig. 3
Fig. 3

Variation with time of the responsivity and background signal of the two InSb detectors, after cooling to liquid-nitrogen temperature.

Fig. 4
Fig. 4

Variation with time of the background current of the two InSb detectors. The linear drift components were subtracted from the raw data to show only the short-term drift and noise.

Fig. 5
Fig. 5

Measured absorptance of the black coating and transmittance of the sapphire window for the thermopiles used (averages of several devices). The dashed curve gives the normalized spectral correction curve for this type of thermopile.

Fig. 6
Fig. 6

Calibration of the 4-mm-diameter InSb detector with use of a thermopile; results of five calibrations and average value.

Fig. 7
Fig. 7

Comparison of the spectral responsivity curves for the 4- and 7-mm InSb detectors.

Fig. 8
Fig. 8

Comparison of two calibrations performed on the 4-mm InSb detector at a 7-month interval with use of the same Ge reference detector.

Fig. 9
Fig. 9

Schematic diagram of the apparatus used for measuring the spatial uniformity of detectors at various wavelengths.

Fig. 10
Fig. 10

Measurements of the uniformity of the 4- and 7-mm InSb detectors at three wavelengths (1600, 2100, and 2300 nm) and along two orthogonal axes: horizontal (0°) and vertical (90°).

Fig. 11
Fig. 11

Linearity measurements on the 4- and 7-mm InSb detectors. The curves give the percent difference in responsivity at a given photocurrent relative to that at a photocurrent of 10-5 A.

Fig. 12
Fig. 12

Effect of a prolonged irradiation on the responsivity of the 4-mm InSb detector at a wavelength of 1500 nm.

Metrics