Abstract

A novel compact multichannel integrated optical sensor module is described. Its performance is demonstrated by measurement of the mass adsorption of an analyte molecule to the transducer surface by refractometry in an immunosensor experiment. The signal transduction is achieved by means of chirped grating couplers, which allow simple yet highly functional sensor modules to be built. The experiments were performed with high-sensitivity replicated polycarbonate TiO2 waveguide sensor chips for detecting the binding of rabbit immunoglobulin to immobilized protein A. A resolution of ±3 pg/mm2 surface mass coverage was obtained in a dual-channel module with size 10 cm × 10 cm × 10 cm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tiefenthaler, W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
    [CrossRef]
  2. W. Lukosz, D. Clerc, Ph. M. Nellen, “Input and output grating couplers as integrated optical biosensors,” Sens. Actuators A 25-27, 181–184 (1991).
  3. R. E. Kunz, G. Duveneck, M. Ehrat, “Sensing pads for hybrid and monolithic integrated optical immunosensors,” in Medical Sensors II and Fiber Optic Sensors, A. V. Scheggi, F. Baldini, P. R. Coulet, O. S. Wolfbeis, eds., Proc. SPIE2331, 2–17 (1994).
    [CrossRef]
  4. Ch. Fattinger, C. Mangold, M. T. Gale, H. Schütz, “Bidiffractive grating coupler: universal transducer for optical interface analytics,” Opt. Eng. 34, 2744–2753 (1995).
    [CrossRef]
  5. A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
    [CrossRef]
  6. J. Dübendorfer, R. E. Kunz, E. Mader, G. L. Duveneck, M. Ehrat, “Sensing and reference pads for integrated optical immunosensors,” J. Biomed. Opt. 2, 391–400 (1997).
    [CrossRef]
  7. K. Tiefenthaler, BIOS-1, Artificial Sensing Instruments AG, Zurich, Switzerland (personal communication).
  8. R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38-39, 13–28 (1997).
    [CrossRef]
  9. L. U. Kempen, “Integrated optical sensor modules,” Ph.D. dissertation (University of Neuchâtel, Neuchâtel, Switzerland, 1996).
  10. R. E. Kunz, J. Dübendorfer, “Miniature integrated optical wavelength analyzer chip,” Opt. Lett. 20, 2300–2302 (1995).
    [CrossRef] [PubMed]
  11. R. E. Kunz, “Integrated optical sensors based on hard dielectric films on replicated plastic substrates,” presented at the European Conference on Integrated Optics, 2–4 April 1997, Stockholm, Sweden.
  12. R. E. Kunz, “Gradient effective index waveguide sensors,” Sens. Actuators B 11, 167–176 (1993).
    [CrossRef]
  13. R. E. Kunz, L. U. Kempen, “Miniature integrated optical sensors,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 69–86 (1994).
    [CrossRef]
  14. D. W. Hewak, J. W. Y. Lit, “Generalized dispersion properties of a four-layer thin-film waveguide,” Appl. Opt. 26, 833–841 (1987).
    [CrossRef] [PubMed]
  15. E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, “Optimization of multilayer integrated optics waveguides,” J. Lightwave Technol. 12, 512–517 (1994).
    [CrossRef]
  16. R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosens. Bioelectron. 11, 653–667 (1996).
    [CrossRef]
  17. R. E. Kunz, J. Edlinger, B. J. Curtis, M. T. Gale, L. U. Kempen, H. Rudigier, H. Schütz, “Grating couplers in tapered waveguides for integrated optical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 313–325 (1994).
    [CrossRef]
  18. R. E. Kunz, J. Edlinger, P. Sixt, M. T. Gale, “Replicated chirped waveguide gratings for optical sensing applications,” Sens. Actuators A 47, 482–486 (1995).
    [CrossRef]

1997 (2)

J. Dübendorfer, R. E. Kunz, E. Mader, G. L. Duveneck, M. Ehrat, “Sensing and reference pads for integrated optical immunosensors,” J. Biomed. Opt. 2, 391–400 (1997).
[CrossRef]

R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38-39, 13–28 (1997).
[CrossRef]

1996 (2)

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosens. Bioelectron. 11, 653–667 (1996).
[CrossRef]

1995 (3)

R. E. Kunz, J. Edlinger, P. Sixt, M. T. Gale, “Replicated chirped waveguide gratings for optical sensing applications,” Sens. Actuators A 47, 482–486 (1995).
[CrossRef]

Ch. Fattinger, C. Mangold, M. T. Gale, H. Schütz, “Bidiffractive grating coupler: universal transducer for optical interface analytics,” Opt. Eng. 34, 2744–2753 (1995).
[CrossRef]

R. E. Kunz, J. Dübendorfer, “Miniature integrated optical wavelength analyzer chip,” Opt. Lett. 20, 2300–2302 (1995).
[CrossRef] [PubMed]

1994 (1)

E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, “Optimization of multilayer integrated optics waveguides,” J. Lightwave Technol. 12, 512–517 (1994).
[CrossRef]

1993 (1)

R. E. Kunz, “Gradient effective index waveguide sensors,” Sens. Actuators B 11, 167–176 (1993).
[CrossRef]

1991 (1)

W. Lukosz, D. Clerc, Ph. M. Nellen, “Input and output grating couplers as integrated optical biosensors,” Sens. Actuators A 25-27, 181–184 (1991).

1989 (1)

1987 (1)

Anemogiannis, E.

E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, “Optimization of multilayer integrated optics waveguides,” J. Lightwave Technol. 12, 512–517 (1994).
[CrossRef]

Bier, F.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

Bilitewski, U.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

Brandenburg, A.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

Clerc, D.

W. Lukosz, D. Clerc, Ph. M. Nellen, “Input and output grating couplers as integrated optical biosensors,” Sens. Actuators A 25-27, 181–184 (1991).

Curtis, B. J.

R. E. Kunz, J. Edlinger, B. J. Curtis, M. T. Gale, L. U. Kempen, H. Rudigier, H. Schütz, “Grating couplers in tapered waveguides for integrated optical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 313–325 (1994).
[CrossRef]

Dübendorfer, J.

J. Dübendorfer, R. E. Kunz, E. Mader, G. L. Duveneck, M. Ehrat, “Sensing and reference pads for integrated optical immunosensors,” J. Biomed. Opt. 2, 391–400 (1997).
[CrossRef]

R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosens. Bioelectron. 11, 653–667 (1996).
[CrossRef]

R. E. Kunz, J. Dübendorfer, “Miniature integrated optical wavelength analyzer chip,” Opt. Lett. 20, 2300–2302 (1995).
[CrossRef] [PubMed]

Duveneck, G.

R. E. Kunz, G. Duveneck, M. Ehrat, “Sensing pads for hybrid and monolithic integrated optical immunosensors,” in Medical Sensors II and Fiber Optic Sensors, A. V. Scheggi, F. Baldini, P. R. Coulet, O. S. Wolfbeis, eds., Proc. SPIE2331, 2–17 (1994).
[CrossRef]

Duveneck, G. L.

J. Dübendorfer, R. E. Kunz, E. Mader, G. L. Duveneck, M. Ehrat, “Sensing and reference pads for integrated optical immunosensors,” J. Biomed. Opt. 2, 391–400 (1997).
[CrossRef]

Edlinger, J.

R. E. Kunz, J. Edlinger, P. Sixt, M. T. Gale, “Replicated chirped waveguide gratings for optical sensing applications,” Sens. Actuators A 47, 482–486 (1995).
[CrossRef]

R. E. Kunz, J. Edlinger, B. J. Curtis, M. T. Gale, L. U. Kempen, H. Rudigier, H. Schütz, “Grating couplers in tapered waveguides for integrated optical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 313–325 (1994).
[CrossRef]

Ehrat, M.

J. Dübendorfer, R. E. Kunz, E. Mader, G. L. Duveneck, M. Ehrat, “Sensing and reference pads for integrated optical immunosensors,” J. Biomed. Opt. 2, 391–400 (1997).
[CrossRef]

R. E. Kunz, G. Duveneck, M. Ehrat, “Sensing pads for hybrid and monolithic integrated optical immunosensors,” in Medical Sensors II and Fiber Optic Sensors, A. V. Scheggi, F. Baldini, P. R. Coulet, O. S. Wolfbeis, eds., Proc. SPIE2331, 2–17 (1994).
[CrossRef]

Fattinger, Ch.

Ch. Fattinger, C. Mangold, M. T. Gale, H. Schütz, “Bidiffractive grating coupler: universal transducer for optical interface analytics,” Opt. Eng. 34, 2744–2753 (1995).
[CrossRef]

Gale, M. T.

Ch. Fattinger, C. Mangold, M. T. Gale, H. Schütz, “Bidiffractive grating coupler: universal transducer for optical interface analytics,” Opt. Eng. 34, 2744–2753 (1995).
[CrossRef]

R. E. Kunz, J. Edlinger, P. Sixt, M. T. Gale, “Replicated chirped waveguide gratings for optical sensing applications,” Sens. Actuators A 47, 482–486 (1995).
[CrossRef]

R. E. Kunz, J. Edlinger, B. J. Curtis, M. T. Gale, L. U. Kempen, H. Rudigier, H. Schütz, “Grating couplers in tapered waveguides for integrated optical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 313–325 (1994).
[CrossRef]

Gaylord, T. K.

E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, “Optimization of multilayer integrated optics waveguides,” J. Lightwave Technol. 12, 512–517 (1994).
[CrossRef]

Glytsis, E. N.

E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, “Optimization of multilayer integrated optics waveguides,” J. Lightwave Technol. 12, 512–517 (1994).
[CrossRef]

Hewak, D. W.

Kempen, L. U.

R. E. Kunz, L. U. Kempen, “Miniature integrated optical sensors,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 69–86 (1994).
[CrossRef]

L. U. Kempen, “Integrated optical sensor modules,” Ph.D. dissertation (University of Neuchâtel, Neuchâtel, Switzerland, 1996).

R. E. Kunz, J. Edlinger, B. J. Curtis, M. T. Gale, L. U. Kempen, H. Rudigier, H. Schütz, “Grating couplers in tapered waveguides for integrated optical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 313–325 (1994).
[CrossRef]

Kunz, R. E.

R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38-39, 13–28 (1997).
[CrossRef]

J. Dübendorfer, R. E. Kunz, E. Mader, G. L. Duveneck, M. Ehrat, “Sensing and reference pads for integrated optical immunosensors,” J. Biomed. Opt. 2, 391–400 (1997).
[CrossRef]

R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosens. Bioelectron. 11, 653–667 (1996).
[CrossRef]

R. E. Kunz, J. Edlinger, P. Sixt, M. T. Gale, “Replicated chirped waveguide gratings for optical sensing applications,” Sens. Actuators A 47, 482–486 (1995).
[CrossRef]

R. E. Kunz, J. Dübendorfer, “Miniature integrated optical wavelength analyzer chip,” Opt. Lett. 20, 2300–2302 (1995).
[CrossRef] [PubMed]

R. E. Kunz, “Gradient effective index waveguide sensors,” Sens. Actuators B 11, 167–176 (1993).
[CrossRef]

R. E. Kunz, L. U. Kempen, “Miniature integrated optical sensors,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 69–86 (1994).
[CrossRef]

R. E. Kunz, “Integrated optical sensors based on hard dielectric films on replicated plastic substrates,” presented at the European Conference on Integrated Optics, 2–4 April 1997, Stockholm, Sweden.

R. E. Kunz, J. Edlinger, B. J. Curtis, M. T. Gale, L. U. Kempen, H. Rudigier, H. Schütz, “Grating couplers in tapered waveguides for integrated optical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 313–325 (1994).
[CrossRef]

R. E. Kunz, G. Duveneck, M. Ehrat, “Sensing pads for hybrid and monolithic integrated optical immunosensors,” in Medical Sensors II and Fiber Optic Sensors, A. V. Scheggi, F. Baldini, P. R. Coulet, O. S. Wolfbeis, eds., Proc. SPIE2331, 2–17 (1994).
[CrossRef]

Lit, J. W. Y.

Lukosz, W.

W. Lukosz, D. Clerc, Ph. M. Nellen, “Input and output grating couplers as integrated optical biosensors,” Sens. Actuators A 25-27, 181–184 (1991).

K. Tiefenthaler, W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
[CrossRef]

Mader, E.

J. Dübendorfer, R. E. Kunz, E. Mader, G. L. Duveneck, M. Ehrat, “Sensing and reference pads for integrated optical immunosensors,” J. Biomed. Opt. 2, 391–400 (1997).
[CrossRef]

Mangold, C.

Ch. Fattinger, C. Mangold, M. T. Gale, H. Schütz, “Bidiffractive grating coupler: universal transducer for optical interface analytics,” Opt. Eng. 34, 2744–2753 (1995).
[CrossRef]

Morf, R. H.

R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosens. Bioelectron. 11, 653–667 (1996).
[CrossRef]

Nellen, Ph. M.

W. Lukosz, D. Clerc, Ph. M. Nellen, “Input and output grating couplers as integrated optical biosensors,” Sens. Actuators A 25-27, 181–184 (1991).

Polzius, R.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

Rudigier, H.

R. E. Kunz, J. Edlinger, B. J. Curtis, M. T. Gale, L. U. Kempen, H. Rudigier, H. Schütz, “Grating couplers in tapered waveguides for integrated optical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 313–325 (1994).
[CrossRef]

Schütz, H.

Ch. Fattinger, C. Mangold, M. T. Gale, H. Schütz, “Bidiffractive grating coupler: universal transducer for optical interface analytics,” Opt. Eng. 34, 2744–2753 (1995).
[CrossRef]

R. E. Kunz, J. Edlinger, B. J. Curtis, M. T. Gale, L. U. Kempen, H. Rudigier, H. Schütz, “Grating couplers in tapered waveguides for integrated optical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 313–325 (1994).
[CrossRef]

Sixt, P.

R. E. Kunz, J. Edlinger, P. Sixt, M. T. Gale, “Replicated chirped waveguide gratings for optical sensing applications,” Sens. Actuators A 47, 482–486 (1995).
[CrossRef]

Tiefenthaler, K.

K. Tiefenthaler, W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6, 209–220 (1989).
[CrossRef]

K. Tiefenthaler, BIOS-1, Artificial Sensing Instruments AG, Zurich, Switzerland (personal communication).

Wagner, E.

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

R. E. Kunz, J. Dübendorfer, R. H. Morf, “Finite grating depth effects for integrated optical sensors with high sensitivity,” Biosens. Bioelectron. 11, 653–667 (1996).
[CrossRef]

J. Biomed. Opt. (1)

J. Dübendorfer, R. E. Kunz, E. Mader, G. L. Duveneck, M. Ehrat, “Sensing and reference pads for integrated optical immunosensors,” J. Biomed. Opt. 2, 391–400 (1997).
[CrossRef]

J. Lightwave Technol. (1)

E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, “Optimization of multilayer integrated optics waveguides,” J. Lightwave Technol. 12, 512–517 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

Ch. Fattinger, C. Mangold, M. T. Gale, H. Schütz, “Bidiffractive grating coupler: universal transducer for optical interface analytics,” Opt. Eng. 34, 2744–2753 (1995).
[CrossRef]

Opt. Lett. (1)

Sens. Actuators A (2)

W. Lukosz, D. Clerc, Ph. M. Nellen, “Input and output grating couplers as integrated optical biosensors,” Sens. Actuators A 25-27, 181–184 (1991).

R. E. Kunz, J. Edlinger, P. Sixt, M. T. Gale, “Replicated chirped waveguide gratings for optical sensing applications,” Sens. Actuators A 47, 482–486 (1995).
[CrossRef]

Sens. Actuators B (3)

A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30, 55–59 (1996).
[CrossRef]

R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38-39, 13–28 (1997).
[CrossRef]

R. E. Kunz, “Gradient effective index waveguide sensors,” Sens. Actuators B 11, 167–176 (1993).
[CrossRef]

Other (6)

R. E. Kunz, L. U. Kempen, “Miniature integrated optical sensors,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 69–86 (1994).
[CrossRef]

R. E. Kunz, “Integrated optical sensors based on hard dielectric films on replicated plastic substrates,” presented at the European Conference on Integrated Optics, 2–4 April 1997, Stockholm, Sweden.

R. E. Kunz, J. Edlinger, B. J. Curtis, M. T. Gale, L. U. Kempen, H. Rudigier, H. Schütz, “Grating couplers in tapered waveguides for integrated optical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors V, R. A. Lieberman, ed., Proc. SPIE2068, 313–325 (1994).
[CrossRef]

L. U. Kempen, “Integrated optical sensor modules,” Ph.D. dissertation (University of Neuchâtel, Neuchâtel, Switzerland, 1996).

K. Tiefenthaler, BIOS-1, Artificial Sensing Instruments AG, Zurich, Switzerland (personal communication).

R. E. Kunz, G. Duveneck, M. Ehrat, “Sensing pads for hybrid and monolithic integrated optical immunosensors,” in Medical Sensors II and Fiber Optic Sensors, A. V. Scheggi, F. Baldini, P. R. Coulet, O. S. Wolfbeis, eds., Proc. SPIE2331, 2–17 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Top view and (b) cross section of a dual-channel IO chirped grating pad (bio)chemical sensor.

Fig. 2
Fig. 2

Compact IO sensor module.

Fig. 3
Fig. 3

Stability of signal acquisition and subsequent peak fitting for an IO immunosensor during a buffer sequence at a flow rate of 1 mL/min.

Fig. 4
Fig. 4

Typical intensity distributions on the detector for three conditions, a–c, during the assay presented in Fig. 5.

Fig. 5
Fig. 5

(a) Apparent thickness variations Δ l,S (filled circles) for the sensing pad and Δ l,R (open circles) for the reference pad and (b) calculated equivalent thickness variation Δh l = Δ l,S - Δ l,R during one cycle of an immunoassay including a regeneration step. B’s, buffer solution (PBS + 1% BSA); A’s, analyte solution (10-8 M r-IgG in buffer); R, regeneration solution (glycine, pH 3.4). The intensity distributions shown in Fig. 4 correspond to points a–c marked in (a) by large open circles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N = n a sin   θ i + m g λ / Λ y
Δ N = N y | y b Δ y b = λ g Λ y b Λ y b 2   Δ y b ,
Δ Γ = Γ m Δ h l / h m ,

Metrics