Abstract

An experimental investigation of W/C, W/Ti, Ni/Ti, and Ni/V multilayers is presented that uses synchrotron radiation in the soft-x-ray energy region between 100 and 1500 eV with special emphasis on the water window. The multilayers were designed as normal incidence reflectors and for polarimetry purposes around the Brewster angle. Both reflection and transmission multilayers were prepared for use as linear polarizers and phase retarders, respectively, to produce or analyze circularly polarized light. Their period was optimized to achieve maximum reflectance at the 1s absorption edge of C (284 eV) and the 2p edges of Ti (454 eV) and V (512 eV), respectively. At these edges the multilayers show an enhancement of reflectance and energy resolution that is in accordance with theoretical calculations.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
    [CrossRef]
  2. L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
    [CrossRef]
  3. A. M. Hawryluk, N. M. Ceglio, “Wavelength considerations in soft x-ray projection lithography,” Appl. Opt. 32, 7062–7067 (1993).
    [CrossRef] [PubMed]
  4. N. N. Salashchenko, Y. Y. Platonov, S. Y. Zuev, “Multilayer x-ray optics for synchrotron radiation,” Nucl. Instrum. Methods A 359, 114–120 (1995).
    [CrossRef]
  5. J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, M. Yanaghira, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2965 (1992).
    [CrossRef]
  6. S. DiFonzo, R. Müller, W. Jark, A. Gaupp, F. Schäfers, J. H. Underwood, “Multilayer transmission phase shifters for the carbon K edge and the water window,” Rev. Sci. Instrum. 66, 1513–1516 (1995).
    [CrossRef]
  7. C. Montcalm, P. A. Kearney, J. M. Slaughter, B. T. Sullivan, M. Chaker, H. Pepin, C. M. Falco, “Survey of Ti-, B-, and Y-based soft-x-ray-extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region,” Appl. Opt. 35, 5134–5147 (1996).
    [CrossRef] [PubMed]
  8. E. Spiller, ed., Soft X-Ray Optics, Vol. PM15 of SPIE Monographs and Handbooks Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994).
  9. D. G. Stearns, R. S. Rosen, S. P. Vernon, “Multilayer mirror technology for soft x-ray projection lithography,” Appl. Opt. 31, 6952–6960 (1993).
    [CrossRef]
  10. G. Gutman, “High-performance Mo/Si and W/B4C multilayer mirrors for soft x-ray imaging optics,” J. X-Ray. Sci. Technol. 4, 142–150 (1994).
    [CrossRef]
  11. K. M. Skulina, C. S. Alford, R. M. Bionta, D. M. Makowiecki, E. M. Gullikson, R. Soufli, J. B. Kortright, J. H. Underwood, “Molybdenum/beryllium multilayer mirrors for normal incidence in the extreme ultraviolet,” Appl. Opt. 34, 3727–3730 (1995).
    [CrossRef] [PubMed]
  12. D. G. Stearns, R. S. Rosen, S. P. Vernon, “Normal-incidence x-ray mirror for 7 nm,” Opt. Lett. 16, 1283–1285 (1991).
    [CrossRef] [PubMed]
  13. A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky, E. N. Ragozin, N. N. Salashchenko, V. A. Slemzin, “Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow band reflection in the range λ ∼ 4.5 nm,” Phys. Scr. 48, 516–520 (1993).
    [CrossRef]
  14. I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
    [CrossRef]
  15. M. Yamamoto, T. Namioka, “Layer-by-layer design method for soft-x-ray multilayers,” Appl. Opt. 31, 1622–1630 (1992).
    [CrossRef] [PubMed]
  16. A. E. Rosenbluth, “Computer search for layer materials that maximize the reflectivity of x-ray multilayers,” Rev. Phys. Appl. 23, 1599–1621 (1988).
    [CrossRef]
  17. E. Spiller, Multilayer Optics for Soft X Rays, (Plenum, New York, 1986).
  18. S. Di Fonzo, W. Jark, “A quarter waveplate for the polarization analysis close to the carbon K edge,” Rev. Sci. Instrum. 63, 1375–1378 (1992).
    [CrossRef]
  19. H. E. Bennet, J. M. Bennet, Physics of Thin Films (Academic, New York, 1969), Vol. 4.
  20. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50-30000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]
  21. F. Schäfers, M. Krumrey, “REFLEC—a program to calculate soft x-ray optical elements and synchrotron radiation beamlines,” Tech. Rep. BESSY TB 201 (Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, m.b.h., Berlin, 1996).
  22. P. F. Miceli, D. A. Neumann, H. Zabel, “X-ray refractive index: a tool to determine the average composition in multilayer structures,” Appl. Phys. Lett. 48, 24–26 (1986).
    [CrossRef]
  23. F. Schäfers, H.-Ch. Mertins, F. Schmolla, I. Packe, N. N. Salashchenko, E. A. Shamov, “Cr/Sc multilayers for the soft x-ray range,” Appl. Opt. 37, 719–728 (1998).
    [CrossRef]
  24. W. Jark, J. Stöhr, “A high-vacuum triple-axis-diffractometer for soft x-ray scattering experiments,” Nucl. Instrum. Methods A 266, 654–658 (1988).
    [CrossRef]
  25. Ch. Jung, ed., “Research at BESSY,” A Users Handbook (Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, m.b.H., Berlin, 1995).
  26. For further information on the multilayer survey, see http://www-cxto.lbl.gov/multilayer/survey.html .
  27. F. Schäfers, A. Furuzawa, K. Yamashita, M. Watanabe, J. Underwood, “Beam splitting and polarizing properties of Cr/C multilayers close to the carbon K-edge,” in Physics of X-Ray Multilayer Structures, Vol. 6 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 155.
  28. F. M. F. de Groot, J. C. Fuggle, B. T. Thole, G. A. Sawatzky, “2p x-ray absorption of 3d transition-metal compounds: an atomic multiplet description including crystal field,” Phys. Rev. B 42, 5459–5468 (1990).
    [CrossRef]
  29. H. Nagata, “Nickel/vanadium and nickel/titanium multilayers for x-ray optics,” Jpn. J. Appl. Phys. 29, 1215–1219 (1990).
    [CrossRef]
  30. M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
    [CrossRef]
  31. O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
    [CrossRef]
  32. T. D. Shen, M. X. Quan, J. T. Wang, Z. Q. Hu, “Amorphous phase growth by isothermal annealing-induced interdiffusion reactions in mechanically deformed Ni/Ti multilayered composites,” J. Mater. Sci. 29, 2981–2986 (1994).
    [CrossRef]
  33. Ch. Morawe, H. Zabel, “Metal/Al2O3: a new class of x-ray mirrors,” J. Appl. Phys. 80, 3639–3645 (1996).
    [CrossRef]
  34. Landoldt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 7 (Springer, Berlin, 1982).

1998 (1)

1996 (2)

1995 (3)

S. DiFonzo, R. Müller, W. Jark, A. Gaupp, F. Schäfers, J. H. Underwood, “Multilayer transmission phase shifters for the carbon K edge and the water window,” Rev. Sci. Instrum. 66, 1513–1516 (1995).
[CrossRef]

N. N. Salashchenko, Y. Y. Platonov, S. Y. Zuev, “Multilayer x-ray optics for synchrotron radiation,” Nucl. Instrum. Methods A 359, 114–120 (1995).
[CrossRef]

K. M. Skulina, C. S. Alford, R. M. Bionta, D. M. Makowiecki, E. M. Gullikson, R. Soufli, J. B. Kortright, J. H. Underwood, “Molybdenum/beryllium multilayer mirrors for normal incidence in the extreme ultraviolet,” Appl. Opt. 34, 3727–3730 (1995).
[CrossRef] [PubMed]

1994 (4)

G. Gutman, “High-performance Mo/Si and W/B4C multilayer mirrors for soft x-ray imaging optics,” J. X-Ray. Sci. Technol. 4, 142–150 (1994).
[CrossRef]

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
[CrossRef]

T. D. Shen, M. X. Quan, J. T. Wang, Z. Q. Hu, “Amorphous phase growth by isothermal annealing-induced interdiffusion reactions in mechanically deformed Ni/Ti multilayered composites,” J. Mater. Sci. 29, 2981–2986 (1994).
[CrossRef]

1993 (6)

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50-30000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky, E. N. Ragozin, N. N. Salashchenko, V. A. Slemzin, “Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow band reflection in the range λ ∼ 4.5 nm,” Phys. Scr. 48, 516–520 (1993).
[CrossRef]

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

A. M. Hawryluk, N. M. Ceglio, “Wavelength considerations in soft x-ray projection lithography,” Appl. Opt. 32, 7062–7067 (1993).
[CrossRef] [PubMed]

D. G. Stearns, R. S. Rosen, S. P. Vernon, “Multilayer mirror technology for soft x-ray projection lithography,” Appl. Opt. 31, 6952–6960 (1993).
[CrossRef]

1992 (3)

J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, M. Yanaghira, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2965 (1992).
[CrossRef]

M. Yamamoto, T. Namioka, “Layer-by-layer design method for soft-x-ray multilayers,” Appl. Opt. 31, 1622–1630 (1992).
[CrossRef] [PubMed]

S. Di Fonzo, W. Jark, “A quarter waveplate for the polarization analysis close to the carbon K edge,” Rev. Sci. Instrum. 63, 1375–1378 (1992).
[CrossRef]

1991 (1)

1990 (3)

L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
[CrossRef]

F. M. F. de Groot, J. C. Fuggle, B. T. Thole, G. A. Sawatzky, “2p x-ray absorption of 3d transition-metal compounds: an atomic multiplet description including crystal field,” Phys. Rev. B 42, 5459–5468 (1990).
[CrossRef]

H. Nagata, “Nickel/vanadium and nickel/titanium multilayers for x-ray optics,” Jpn. J. Appl. Phys. 29, 1215–1219 (1990).
[CrossRef]

1988 (2)

W. Jark, J. Stöhr, “A high-vacuum triple-axis-diffractometer for soft x-ray scattering experiments,” Nucl. Instrum. Methods A 266, 654–658 (1988).
[CrossRef]

A. E. Rosenbluth, “Computer search for layer materials that maximize the reflectivity of x-ray multilayers,” Rev. Phys. Appl. 23, 1599–1621 (1988).
[CrossRef]

1986 (1)

P. F. Miceli, D. A. Neumann, H. Zabel, “X-ray refractive index: a tool to determine the average composition in multilayer structures,” Appl. Phys. Lett. 48, 24–26 (1986).
[CrossRef]

Akhsakhalyan, A. D.

A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky, E. N. Ragozin, N. N. Salashchenko, V. A. Slemzin, “Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow band reflection in the range λ ∼ 4.5 nm,” Phys. Scr. 48, 516–520 (1993).
[CrossRef]

Alford, C. S.

Anderson, I. S.

O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
[CrossRef]

Balakireva, L. L.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Bennet, H. E.

H. E. Bennet, J. M. Bennet, Physics of Thin Films (Academic, New York, 1969), Vol. 4.

Bennet, J. M.

H. E. Bennet, J. M. Bennet, Physics of Thin Films (Academic, New York, 1969), Vol. 4.

Bionta, R. M.

Böni, P.

O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
[CrossRef]

Bridou, F.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

Buffat, P.

O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
[CrossRef]

Capasso, C.

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

Ceglio, N. M.

Cerrina, F.

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

Chaker, M.

Cheung, K. C.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50-30000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

de Groot, F. M. F.

F. M. F. de Groot, J. C. Fuggle, B. T. Thole, G. A. Sawatzky, “2p x-ray absorption of 3d transition-metal compounds: an atomic multiplet description including crystal field,” Phys. Rev. B 42, 5459–5468 (1990).
[CrossRef]

Di Fonzo, S.

S. Di Fonzo, W. Jark, “A quarter waveplate for the polarization analysis close to the carbon K edge,” Rev. Sci. Instrum. 63, 1375–1378 (1992).
[CrossRef]

DiFonzo, S.

S. DiFonzo, R. Müller, W. Jark, A. Gaupp, F. Schäfers, J. H. Underwood, “Multilayer transmission phase shifters for the carbon K edge and the water window,” Rev. Sci. Instrum. 66, 1513–1516 (1995).
[CrossRef]

Elsenhaus, O.

O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
[CrossRef]

Falco, C. M.

Farnoux, B.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

Fedorenko, A. I.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Foulet, G.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

Friedli, H. P.

O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
[CrossRef]

Fuggle, J. C.

F. M. F. de Groot, J. C. Fuggle, B. T. Thole, G. A. Sawatzky, “2p x-ray absorption of 3d transition-metal compounds: an atomic multiplet description including crystal field,” Phys. Rev. B 42, 5459–5468 (1990).
[CrossRef]

Furuzawa, A.

F. Schäfers, A. Furuzawa, K. Yamashita, M. Watanabe, J. Underwood, “Beam splitting and polarizing properties of Cr/C multilayers close to the carbon K-edge,” in Physics of X-Ray Multilayer Structures, Vol. 6 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 155.

Gaupp, A.

S. DiFonzo, R. Müller, W. Jark, A. Gaupp, F. Schäfers, J. H. Underwood, “Multilayer transmission phase shifters for the carbon K edge and the water window,” Rev. Sci. Instrum. 66, 1513–1516 (1995).
[CrossRef]

Golub, L.

L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
[CrossRef]

Grimmer, H.

O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
[CrossRef]

Groos, M.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

Gullikson, E. M.

K. M. Skulina, C. S. Alford, R. M. Bionta, D. M. Makowiecki, E. M. Gullikson, R. Soufli, J. B. Kortright, J. H. Underwood, “Molybdenum/beryllium multilayer mirrors for normal incidence in the extreme ultraviolet,” Appl. Opt. 34, 3727–3730 (1995).
[CrossRef] [PubMed]

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50-30000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Gutman, G.

G. Gutman, “High-performance Mo/Si and W/B4C multilayer mirrors for soft x-ray imaging optics,” J. X-Ray. Sci. Technol. 4, 142–150 (1994).
[CrossRef]

Hawryluk, A. M.

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50-30000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Herant, M.

L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
[CrossRef]

Hu, Z. Q.

T. D. Shen, M. X. Quan, J. T. Wang, Z. Q. Hu, “Amorphous phase growth by isothermal annealing-induced interdiffusion reactions in mechanically deformed Ni/Ti multilayered composites,” J. Mater. Sci. 29, 2981–2986 (1994).
[CrossRef]

Jark, W.

S. DiFonzo, R. Müller, W. Jark, A. Gaupp, F. Schäfers, J. H. Underwood, “Multilayer transmission phase shifters for the carbon K edge and the water window,” Rev. Sci. Instrum. 66, 1513–1516 (1995).
[CrossRef]

S. Di Fonzo, W. Jark, “A quarter waveplate for the polarization analysis close to the carbon K edge,” Rev. Sci. Instrum. 63, 1375–1378 (1992).
[CrossRef]

W. Jark, J. Stöhr, “A high-vacuum triple-axis-diffractometer for soft x-ray scattering experiments,” Nucl. Instrum. Methods A 266, 654–658 (1988).
[CrossRef]

Kalata, K.

L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
[CrossRef]

Kearney, P. A.

Kimura, H.

J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, M. Yanaghira, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2965 (1992).
[CrossRef]

Kolachevsky, N. N.

A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky, E. N. Ragozin, N. N. Salashchenko, V. A. Slemzin, “Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow band reflection in the range λ ∼ 4.5 nm,” Phys. Scr. 48, 516–520 (1993).
[CrossRef]

Kondratenko, V. V.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Kortright, J. B.

K. M. Skulina, C. S. Alford, R. M. Bionta, D. M. Makowiecki, E. M. Gullikson, R. Soufli, J. B. Kortright, J. H. Underwood, “Molybdenum/beryllium multilayer mirrors for normal incidence in the extreme ultraviolet,” Appl. Opt. 34, 3727–3730 (1995).
[CrossRef] [PubMed]

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, M. Yanaghira, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2965 (1992).
[CrossRef]

Kozhevnikov, I. V.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Krumrey, M.

F. Schäfers, M. Krumrey, “REFLEC—a program to calculate soft x-ray optical elements and synchrotron radiation beamlines,” Tech. Rep. BESSY TB 201 (Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, m.b.h., Berlin, 1996).

Landoldt-Börnstein,

Landoldt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 7 (Springer, Berlin, 1982).

Leifer, K.

O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
[CrossRef]

Liang, S.

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

Lovas, I.

L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
[CrossRef]

Maaza, M.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

Makowiecki, D. M.

Margaritondo, G.

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

Mayama, K.

J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, M. Yanaghira, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2965 (1992).
[CrossRef]

Mertins, H.-Ch.

Miceli, P. F.

P. F. Miceli, D. A. Neumann, H. Zabel, “X-ray refractive index: a tool to determine the average composition in multilayer structures,” Appl. Phys. Lett. 48, 24–26 (1986).
[CrossRef]

Mitropolsky, M. M.

A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky, E. N. Ragozin, N. N. Salashchenko, V. A. Slemzin, “Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow band reflection in the range λ ∼ 4.5 nm,” Phys. Scr. 48, 516–520 (1993).
[CrossRef]

Montcalm, C.

Morawe, Ch.

Ch. Morawe, H. Zabel, “Metal/Al2O3: a new class of x-ray mirrors,” J. Appl. Phys. 80, 3639–3645 (1996).
[CrossRef]

Müller, R.

S. DiFonzo, R. Müller, W. Jark, A. Gaupp, F. Schäfers, J. H. Underwood, “Multilayer transmission phase shifters for the carbon K edge and the water window,” Rev. Sci. Instrum. 66, 1513–1516 (1995).
[CrossRef]

Nagata, H.

H. Nagata, “Nickel/vanadium and nickel/titanium multilayers for x-ray optics,” Jpn. J. Appl. Phys. 29, 1215–1219 (1990).
[CrossRef]

Namioka, T.

Neumann, D. A.

P. F. Miceli, D. A. Neumann, H. Zabel, “X-ray refractive index: a tool to determine the average composition in multilayer structures,” Appl. Phys. Lett. 48, 24–26 (1986).
[CrossRef]

Ng, W.

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

Nikitin, V.

J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, M. Yanaghira, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2965 (1992).
[CrossRef]

Nystrom, G.

L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
[CrossRef]

Packe, I.

Padmore, H. A.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Pardo, B.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

Pardo, F.

L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
[CrossRef]

Pepin, H.

Perrera, C. C.

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

Pershin, Y. P.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Platonov, Y. Y.

N. N. Salashchenko, Y. Y. Platonov, S. Y. Zuev, “Multilayer x-ray optics for synchrotron radiation,” Nucl. Instrum. Methods A 359, 114–120 (1995).
[CrossRef]

Quan, M. X.

T. D. Shen, M. X. Quan, J. T. Wang, Z. Q. Hu, “Amorphous phase growth by isothermal annealing-induced interdiffusion reactions in mechanically deformed Ni/Ti multilayered composites,” J. Mater. Sci. 29, 2981–2986 (1994).
[CrossRef]

Ragozin, E. N.

A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky, E. N. Ragozin, N. N. Salashchenko, V. A. Slemzin, “Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow band reflection in the range λ ∼ 4.5 nm,” Phys. Scr. 48, 516–520 (1993).
[CrossRef]

Ray-Chaudhuri, A. K.

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

Roper, M.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Rosen, R. S.

D. G. Stearns, R. S. Rosen, S. P. Vernon, “Multilayer mirror technology for soft x-ray projection lithography,” Appl. Opt. 31, 6952–6960 (1993).
[CrossRef]

D. G. Stearns, R. S. Rosen, S. P. Vernon, “Normal-incidence x-ray mirror for 7 nm,” Opt. Lett. 16, 1283–1285 (1991).
[CrossRef] [PubMed]

Rosenbluth, A. E.

A. E. Rosenbluth, “Computer search for layer materials that maximize the reflectivity of x-ray multilayers,” Rev. Phys. Appl. 23, 1599–1621 (1988).
[CrossRef]

Salashchenko, N. N.

F. Schäfers, H.-Ch. Mertins, F. Schmolla, I. Packe, N. N. Salashchenko, E. A. Shamov, “Cr/Sc multilayers for the soft x-ray range,” Appl. Opt. 37, 719–728 (1998).
[CrossRef]

N. N. Salashchenko, Y. Y. Platonov, S. Y. Zuev, “Multilayer x-ray optics for synchrotron radiation,” Nucl. Instrum. Methods A 359, 114–120 (1995).
[CrossRef]

A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky, E. N. Ragozin, N. N. Salashchenko, V. A. Slemzin, “Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow band reflection in the range λ ∼ 4.5 nm,” Phys. Scr. 48, 516–520 (1993).
[CrossRef]

Samuel, F.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

Sawatzky, G. A.

F. M. F. de Groot, J. C. Fuggle, B. T. Thole, G. A. Sawatzky, “2p x-ray absorption of 3d transition-metal compounds: an atomic multiplet description including crystal field,” Phys. Rev. B 42, 5459–5468 (1990).
[CrossRef]

Schäfers, F.

F. Schäfers, H.-Ch. Mertins, F. Schmolla, I. Packe, N. N. Salashchenko, E. A. Shamov, “Cr/Sc multilayers for the soft x-ray range,” Appl. Opt. 37, 719–728 (1998).
[CrossRef]

S. DiFonzo, R. Müller, W. Jark, A. Gaupp, F. Schäfers, J. H. Underwood, “Multilayer transmission phase shifters for the carbon K edge and the water window,” Rev. Sci. Instrum. 66, 1513–1516 (1995).
[CrossRef]

F. Schäfers, A. Furuzawa, K. Yamashita, M. Watanabe, J. Underwood, “Beam splitting and polarizing properties of Cr/C multilayers close to the carbon K-edge,” in Physics of X-Ray Multilayer Structures, Vol. 6 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 155.

F. Schäfers, M. Krumrey, “REFLEC—a program to calculate soft x-ray optical elements and synchrotron radiation beamlines,” Tech. Rep. BESSY TB 201 (Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, m.b.h., Berlin, 1996).

Schmolla, F.

Sella, C.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

Serov, R. V.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Shamov, E. A.

Shen, T. D.

T. D. Shen, M. X. Quan, J. T. Wang, Z. Q. Hu, “Amorphous phase growth by isothermal annealing-induced interdiffusion reactions in mechanically deformed Ni/Ti multilayered composites,” J. Mater. Sci. 29, 2981–2986 (1994).
[CrossRef]

Singh, S.

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

Skulina, K. M.

Slaughter, J. M.

Slemzin, V. A.

A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky, E. N. Ragozin, N. N. Salashchenko, V. A. Slemzin, “Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow band reflection in the range λ ∼ 4.5 nm,” Phys. Scr. 48, 516–520 (1993).
[CrossRef]

Söchtig, J.

O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
[CrossRef]

Soufli, R.

Spiller, E.

L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
[CrossRef]

E. Spiller, Multilayer Optics for Soft X Rays, (Plenum, New York, 1986).

Stearns, D. G.

D. G. Stearns, R. S. Rosen, S. P. Vernon, “Multilayer mirror technology for soft x-ray projection lithography,” Appl. Opt. 31, 6952–6960 (1993).
[CrossRef]

D. G. Stearns, R. S. Rosen, S. P. Vernon, “Normal-incidence x-ray mirror for 7 nm,” Opt. Lett. 16, 1283–1285 (1991).
[CrossRef] [PubMed]

Stöhr, J.

W. Jark, J. Stöhr, “A high-vacuum triple-axis-diffractometer for soft x-ray scattering experiments,” Nucl. Instrum. Methods A 266, 654–658 (1988).
[CrossRef]

Sullivan, B. T.

Thole, B. T.

F. M. F. de Groot, J. C. Fuggle, B. T. Thole, G. A. Sawatzky, “2p x-ray absorption of 3d transition-metal compounds: an atomic multiplet description including crystal field,” Phys. Rev. B 42, 5459–5468 (1990).
[CrossRef]

Underwood, J.

F. Schäfers, A. Furuzawa, K. Yamashita, M. Watanabe, J. Underwood, “Beam splitting and polarizing properties of Cr/C multilayers close to the carbon K-edge,” in Physics of X-Ray Multilayer Structures, Vol. 6 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 155.

Underwood, J. H.

S. DiFonzo, R. Müller, W. Jark, A. Gaupp, F. Schäfers, J. H. Underwood, “Multilayer transmission phase shifters for the carbon K edge and the water window,” Rev. Sci. Instrum. 66, 1513–1516 (1995).
[CrossRef]

K. M. Skulina, C. S. Alford, R. M. Bionta, D. M. Makowiecki, E. M. Gullikson, R. Soufli, J. B. Kortright, J. H. Underwood, “Molybdenum/beryllium multilayer mirrors for normal incidence in the extreme ultraviolet,” Appl. Opt. 34, 3727–3730 (1995).
[CrossRef] [PubMed]

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

van Dorssen, G. E.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Vernon, S. P.

D. G. Stearns, R. S. Rosen, S. P. Vernon, “Multilayer mirror technology for soft x-ray projection lithography,” Appl. Opt. 31, 6952–6960 (1993).
[CrossRef]

D. G. Stearns, R. S. Rosen, S. P. Vernon, “Normal-incidence x-ray mirror for 7 nm,” Opt. Lett. 16, 1283–1285 (1991).
[CrossRef] [PubMed]

Vinogradov, A. V.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Wallace, J. P.

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

Wang, J. T.

T. D. Shen, M. X. Quan, J. T. Wang, Z. Q. Hu, “Amorphous phase growth by isothermal annealing-induced interdiffusion reactions in mechanically deformed Ni/Ti multilayered composites,” J. Mater. Sci. 29, 2981–2986 (1994).
[CrossRef]

Watanabe, M.

F. Schäfers, A. Furuzawa, K. Yamashita, M. Watanabe, J. Underwood, “Beam splitting and polarizing properties of Cr/C multilayers close to the carbon K-edge,” in Physics of X-Ray Multilayer Structures, Vol. 6 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 155.

Wehling, F.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

Welnak, J. T.

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

Wilczynski, J.

L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
[CrossRef]

Yamamoto, M.

J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, M. Yanaghira, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2965 (1992).
[CrossRef]

M. Yamamoto, T. Namioka, “Layer-by-layer design method for soft-x-ray multilayers,” Appl. Opt. 31, 1622–1630 (1992).
[CrossRef] [PubMed]

Yamashita, K.

F. Schäfers, A. Furuzawa, K. Yamashita, M. Watanabe, J. Underwood, “Beam splitting and polarizing properties of Cr/C multilayers close to the carbon K-edge,” in Physics of X-Ray Multilayer Structures, Vol. 6 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 155.

Yanaghira, M.

J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, M. Yanaghira, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2965 (1992).
[CrossRef]

Yulin, S. A.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Zabel, H.

Ch. Morawe, H. Zabel, “Metal/Al2O3: a new class of x-ray mirrors,” J. Appl. Phys. 80, 3639–3645 (1996).
[CrossRef]

P. F. Miceli, D. A. Neumann, H. Zabel, “X-ray refractive index: a tool to determine the average composition in multilayer structures,” Appl. Phys. Lett. 48, 24–26 (1986).
[CrossRef]

Zubarev, E. N.

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

Zuev, S. Y.

N. N. Salashchenko, Y. Y. Platonov, S. Y. Zuev, “Multilayer x-ray optics for synchrotron radiation,” Nucl. Instrum. Methods A 359, 114–120 (1995).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (2)

P. F. Miceli, D. A. Neumann, H. Zabel, “X-ray refractive index: a tool to determine the average composition in multilayer structures,” Appl. Phys. Lett. 48, 24–26 (1986).
[CrossRef]

J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, M. Yanaghira, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2965 (1992).
[CrossRef]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50-30000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

J. Appl. Crystallogr. (1)

M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
[CrossRef]

J. Appl. Phys. (1)

Ch. Morawe, H. Zabel, “Metal/Al2O3: a new class of x-ray mirrors,” J. Appl. Phys. 80, 3639–3645 (1996).
[CrossRef]

J. Mater. Sci. (1)

T. D. Shen, M. X. Quan, J. T. Wang, Z. Q. Hu, “Amorphous phase growth by isothermal annealing-induced interdiffusion reactions in mechanically deformed Ni/Ti multilayered composites,” J. Mater. Sci. 29, 2981–2986 (1994).
[CrossRef]

J. Vac. Sci. Technol. A (1)

A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
[CrossRef]

J. X-Ray. Sci. Technol. (1)

G. Gutman, “High-performance Mo/Si and W/B4C multilayer mirrors for soft x-ray imaging optics,” J. X-Ray. Sci. Technol. 4, 142–150 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Nagata, “Nickel/vanadium and nickel/titanium multilayers for x-ray optics,” Jpn. J. Appl. Phys. 29, 1215–1219 (1990).
[CrossRef]

Nature (London) (1)

L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
[CrossRef]

Nucl. Instrum. Methods A (3)

N. N. Salashchenko, Y. Y. Platonov, S. Y. Zuev, “Multilayer x-ray optics for synchrotron radiation,” Nucl. Instrum. Methods A 359, 114–120 (1995).
[CrossRef]

I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
[CrossRef]

W. Jark, J. Stöhr, “A high-vacuum triple-axis-diffractometer for soft x-ray scattering experiments,” Nucl. Instrum. Methods A 266, 654–658 (1988).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

F. M. F. de Groot, J. C. Fuggle, B. T. Thole, G. A. Sawatzky, “2p x-ray absorption of 3d transition-metal compounds: an atomic multiplet description including crystal field,” Phys. Rev. B 42, 5459–5468 (1990).
[CrossRef]

Phys. Scr. (1)

A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky, E. N. Ragozin, N. N. Salashchenko, V. A. Slemzin, “Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow band reflection in the range λ ∼ 4.5 nm,” Phys. Scr. 48, 516–520 (1993).
[CrossRef]

Rev. Phys. Appl. (1)

A. E. Rosenbluth, “Computer search for layer materials that maximize the reflectivity of x-ray multilayers,” Rev. Phys. Appl. 23, 1599–1621 (1988).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Di Fonzo, W. Jark, “A quarter waveplate for the polarization analysis close to the carbon K edge,” Rev. Sci. Instrum. 63, 1375–1378 (1992).
[CrossRef]

S. DiFonzo, R. Müller, W. Jark, A. Gaupp, F. Schäfers, J. H. Underwood, “Multilayer transmission phase shifters for the carbon K edge and the water window,” Rev. Sci. Instrum. 66, 1513–1516 (1995).
[CrossRef]

Thin Solid Films (1)

O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
[CrossRef]

Other (8)

Landoldt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 7 (Springer, Berlin, 1982).

Ch. Jung, ed., “Research at BESSY,” A Users Handbook (Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, m.b.H., Berlin, 1995).

For further information on the multilayer survey, see http://www-cxto.lbl.gov/multilayer/survey.html .

F. Schäfers, A. Furuzawa, K. Yamashita, M. Watanabe, J. Underwood, “Beam splitting and polarizing properties of Cr/C multilayers close to the carbon K-edge,” in Physics of X-Ray Multilayer Structures, Vol. 6 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 155.

F. Schäfers, M. Krumrey, “REFLEC—a program to calculate soft x-ray optical elements and synchrotron radiation beamlines,” Tech. Rep. BESSY TB 201 (Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, m.b.h., Berlin, 1996).

E. Spiller, ed., Soft X-Ray Optics, Vol. PM15 of SPIE Monographs and Handbooks Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994).

H. E. Bennet, J. M. Bennet, Physics of Thin Films (Academic, New York, 1969), Vol. 4.

E. Spiller, Multilayer Optics for Soft X Rays, (Plenum, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Survey of theoretical NI reflectance data in the water window for different ML systems. The d spacing was varied with photon wavelength λ according to d = λ/2.

Fig. 2
Fig. 2

Plot of imaginary versus real parts of the NI reflectance coefficients for a variety of absorber materials for a photon energy of 453 eV (below the Ti 2p edge).

Fig. 3
Fig. 3

Plot of imaginary versus real parts of the NI reflectance coefficients for a variety of absorber materials for a photon energy of 511 eV (below the V 2p edge).

Fig. 4
Fig. 4

Cu–Kα reflection curves (Θ–2Θ) for selected examples of the investigated ML systems.

Fig. 5
Fig. 5

NI reflectance as function of photon energy for selected examples of all ML systems. Experimental data (solid curve) and calculations (dotted curve) are shown with the roughness σ as the fit parameter.

Fig. 6
Fig. 6

Peak reflectances of the W/C ML’s at photon energies around the C 1s edge. Each data point was extracted from a Θ–2Θ scan or from an energy scan such as those shown in Fig. 5. The incidence angle varies with energy according to the Bragg equation. NI (Θ = 87°) corresponds to the lowest energy. One of the ML’s is matched for use at NI.

Fig. 7
Fig. 7

Same as Fig. 6 but for W/Ti ML’s. The inset shows the near-edge Ti 2p 3/2 and 2p 1/2 region. Three of the ML’s shown in the inset are matched for use at Θ = 45° and NI, respectively.

Fig. 8
Fig. 8

Same as Fig. 6 but for Ni/Ti ML’s. The inset shows the near-edge Ti 2p 3/2 and 2p 1/2 region. Two of the ML’s shown in the inset are matched for use at Θ = 45°.

Fig. 9
Fig. 9

Same as Fig. 6 but for Ni/V ML’s. The inset shows the near-edge V 2p 3/2 and 2p 1/2 region. The two ML’s shown in the inset are matched for use at Θ = 45°.

Fig. 10
Fig. 10

Resolving power EE for selected examples of all ML systems as determined from the FWHM of the Θ–2Θ scans.

Fig. 11
Fig. 11

Transmission of a 120-nm thin Si3N4 film and of the Ni/V, Ni/Ti, and W/Ti ML systems sputter deposited on such films.

Fig. 12
Fig. 12

Angular dependence of the transmissions for different photon energies around the Ti 2p edges of the W/Ti and Ni/Ti ML’s. The insets show the near-edge transmission for NI, taken from Fig. 11.

Fig. 13
Fig. 13

Principles of near-edge reflection demonstrated for a Ni/V sample at the V 2p edge: (a) Bragg reflection curve taken from Fig. 9. (b) penetration depth of light for Θ = 45° calculated from transmission measurements (Fig. 11). The varying number of contributing layers is schematically shown below and above the edge. (c) reflection curves measured at two angles of incidence (filled and open circles). The Bragg peak moves when the angle is varied, while the resonant reflection peaks stay fixed at the p 3/2 and p 1/2 absorption edges; only their intensity changes. (d) real and imaginary parts of the NI reflection coefficients. In the Henke tables used for this calculation, the spin-orbit splitting is not included.

Fig. 14
Fig. 14

Summary of the NI reflectance values (Θ = 87°) for all investigated ML’s, plotted as function of their period and the corresponding photon energy, respectively. The data are taken from Figs. 69.

Fig. 15
Fig. 15

Summary of the reflectance values at Θ = 45° incidence angle (±3°) for all investigated ML’s, plotted as function of their period and the corresponding photon energy, respectively. The data are taken from Figs. 69.

Tables (2)

Tables Icon

Table 1 Investigated Multilayers

Tables Icon

Table 2 Resolving Power at NI and Roughness of Investigated Reflection ML’s

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r = r 0 exp - 2 π σ d 2 .

Metrics