Abstract

We show that it is possible, in Z-scan measurements of thin films, to obtain data that closely resemble typical results for nonlinear optical materials, but which actually arise from linear optical effects caused by sample damage. Z-scan measurements on a silica-based thin film yielded the expected peak–valley signature of Z-scan data, but subsequent analysis and microscopic examination of the film indicated that the data resulted from an ablation hole produced in the film when it was near the laser focus. The resulting spatial variation of the linear refractive index of the film produced a lensing effect that mimicked the typical Z-scan response. Scalar diffraction theory was used to model the effects of a spatially varying refractive index and gave results that qualitatively agreed with the Z-scan measurements.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, “High sensitivity single beam n2 measurement,” Opt. Lett. 14, 955–957 (1989).
    [CrossRef]
  2. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  3. K. M. Unruh, B. M. Patterson, S. I. Shah, “Melting behavior of Snx(SiO2)100-x granular metal films,” J. Mater. Res. 7, 214–218 (1992).
    [CrossRef]
  4. B. Abeles, “Granular metal films,” in Applied Solid State Science, R. Wolfe, ed. (Academic, New York, 1976), Vol. 6, pp. 1–117.
  5. R. H. Magruder, R. F. Haglund, L. Yang, J. E. Wittig, R. A. Zuhr, “Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica,” J. Appl. Phys. 76, 708–715 (1994).
    [CrossRef]
  6. K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
    [CrossRef]
  7. T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
    [CrossRef]
  8. W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
    [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

1994

R. H. Magruder, R. F. Haglund, L. Yang, J. E. Wittig, R. A. Zuhr, “Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica,” J. Appl. Phys. 76, 708–715 (1994).
[CrossRef]

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

1993

W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[CrossRef]

1992

K. M. Unruh, B. M. Patterson, S. I. Shah, “Melting behavior of Snx(SiO2)100-x granular metal films,” J. Mater. Res. 7, 214–218 (1992).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1989

Abeles, B.

B. Abeles, “Granular metal films,” in Applied Solid State Science, R. Wolfe, ed. (Academic, New York, 1976), Vol. 6, pp. 1–117.

Asahara, Y.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

Chayahara, A.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

Fujii, K.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

Fukumi, K.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Haglund, R. F.

R. H. Magruder, R. F. Haglund, L. Yang, J. E. Wittig, R. A. Zuhr, “Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica,” J. Appl. Phys. 76, 708–715 (1994).
[CrossRef]

Hayakawa, J.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

Horino, Y.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

Kadono, K.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

Kaneko, S.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

Magruder, R. H.

R. H. Magruder, R. F. Haglund, L. Yang, J. E. Wittig, R. A. Zuhr, “Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica,” J. Appl. Phys. 76, 708–715 (1994).
[CrossRef]

Miya, M.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

Nakamura, A.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

Omi, S.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

Palffy-Muhoray, P.

W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[CrossRef]

Patterson, B. M.

K. M. Unruh, B. M. Patterson, S. I. Shah, “Melting behavior of Snx(SiO2)100-x granular metal films,” J. Mater. Res. 7, 214–218 (1992).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, “High sensitivity single beam n2 measurement,” Opt. Lett. 14, 955–957 (1989).
[CrossRef]

Sakaguchi, T.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

Satou, M.

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

Shah, S. I.

K. M. Unruh, B. M. Patterson, S. I. Shah, “Melting behavior of Snx(SiO2)100-x granular metal films,” J. Mater. Res. 7, 214–218 (1992).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, “High sensitivity single beam n2 measurement,” Opt. Lett. 14, 955–957 (1989).
[CrossRef]

Tanji, H.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

Tokizaki, T.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

Uchida, K.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

Unruh, K. M.

K. M. Unruh, B. M. Patterson, S. I. Shah, “Melting behavior of Snx(SiO2)100-x granular metal films,” J. Mater. Res. 7, 214–218 (1992).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, “High sensitivity single beam n2 measurement,” Opt. Lett. 14, 955–957 (1989).
[CrossRef]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wittig, J. E.

R. H. Magruder, R. F. Haglund, L. Yang, J. E. Wittig, R. A. Zuhr, “Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica,” J. Appl. Phys. 76, 708–715 (1994).
[CrossRef]

Yang, L.

R. H. Magruder, R. F. Haglund, L. Yang, J. E. Wittig, R. A. Zuhr, “Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica,” J. Appl. Phys. 76, 708–715 (1994).
[CrossRef]

Zhao, W.

W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[CrossRef]

Zuhr, R. A.

R. H. Magruder, R. F. Haglund, L. Yang, J. E. Wittig, R. A. Zuhr, “Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica,” J. Appl. Phys. 76, 708–715 (1994).
[CrossRef]

Appl. Phys. Lett.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, Y. Asahara, “Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65, 941–943 (1994).
[CrossRef]

W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams,” Appl. Phys. Lett. 63, 1613–1615 (1993).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Appl. Phys.

R. H. Magruder, R. F. Haglund, L. Yang, J. E. Wittig, R. A. Zuhr, “Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica,” J. Appl. Phys. 76, 708–715 (1994).
[CrossRef]

K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Phys. 75, 3075–3080 (1994).
[CrossRef]

J. Mater. Res.

K. M. Unruh, B. M. Patterson, S. I. Shah, “Melting behavior of Snx(SiO2)100-x granular metal films,” J. Mater. Res. 7, 214–218 (1992).
[CrossRef]

Opt. Lett.

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

B. Abeles, “Granular metal films,” in Applied Solid State Science, R. Wolfe, ed. (Academic, New York, 1976), Vol. 6, pp. 1–117.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement for the Z-scan measurement. The laser beam is focused with a lens of focal length f, and the detector is located a distance z D away from the focus. The thin film is moved a distance z relative to the lens focal point, and the light transmitted through an aperture is measured.

Fig. 2
Fig. 2

Normalized Z-scan data for (a) the 1-mm cuvette of CS2 and (b) the Cu:SiO2 thin film. The transmission was normalized with data obtained at large values of z. The error for the transmission values is approximately twice the size of the data symbol.

Fig. 3
Fig. 3

Intensity variation of the magnitude of the nonlinear refractive index n 2 calculated from the Z-scan data for CS2 (filled circles) and the Cu:SiO2 thin film (open squares). The dashed curve represents an I -1 dependence.

Fig. 4
Fig. 4

Profilometer scan showing a laser ablation hole in the Cu:SiO2 thin film.

Fig. 5
Fig. 5

(a) Incident field amplitude ϕ a (r) for various positions (z) of the film plane. (b) Calculated power received by the detector as a function of sample position.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n 2 = c λ n 0 Φ 0 80 π 2 L eff I 0 ,
Φ 0 = 2.7   tanh - 1 T pv 2.8 1 - S 1.14 ,
n = n 0 + n 2 2 + Δ n 0 | E | 2 | E | 2 .
ϕ a r ,   z = k   exp ikr 2 2 f + z i f + z     ψ 0 s L s × J 0 k   rs f + z exp iks 2 2 f + z s d s ,
T s = 1 exp i θ   s < a s a ,
ϕ D r = k z D - z     ϕ a s T s × J 0 k   rs z D - z exp iks 2 2 z D - z s d s .

Metrics