Abstract

We present a design for a microscope with a simple objective lens with a high numerical aperture. The large amounts of aberrations present in the system are removed when a point-source image hologram is recorded. The resultant instrument has a large working distance (>0.17 m) and a moderate field of view over a limited bandwidth. We demonstrate the application of this device to imaging submicrometer details inside a vacuum.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. Phys. Soc. London Sect. A 197, 454–487 (1949).
  2. D. Gabor, “Microscopy by reconstructed wave fronts: II,” Proc. Phys. Soc. London Sect. B 64, 221–241 (1951).
  3. E. N. Leith, J. Upatnieks, K. A. Haines, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 981–986 (1965).
  4. J. Upatnieks, A. Vander Lugt, E. Leith, “Correction of lens aberrations by means of holograms,” Appl. Opt. 5, 589–593 (1966).
  5. G. W. Ellis, “Holomicrography: transformation of image during reconstruction a posteriori,” Science 154, 1195–1197 (1966).
  6. R. F. VanLigten, H. Osterberg, “Holographic microscopy,” Nature (London) 211, 282–283 (1966).
  7. R. A. Briones, L. O. Heflinger, R. F. Wuerker, “Holographic microscopy,” Appl. Opt. 17, 944–950 (1978).
  8. J. P. Laude, D. Lepére, “Latest developments in high resolution aplanetic holographic objectives,” in Developments in Semiconductor Microlithography III, R. L. Ruddell, D. Ciarlo, J. Dey, K. Hoeppner, eds., Proc. SPIE135, 68–76 (1978).
  9. I. Weingärtner, “A holographic mirror objective,” Optik 65, 49–61 (1983).
  10. R. F. Wuerker, D. A. Hill, “Holographic microscopy,” Opt. Eng. 24, 480–484 (1985).
  11. G. Andersen, J. Munch, P. Veitch, “Holographic correction of large telescope primaries by proximal, off-axis beacons,” Appl. Opt. 35, 603–608 (1996).
  12. G. Andersen, J. Munch, P. Veitch, “Compact, holographic correction of aberrated telescopes,” Appl. Opt. 36, 1427–1432 (1997).
  13. H. Kogelnik, K. S. J. Pennington, “Holographic imaging through a random medium,” Opt. Soc. Am. 58, 273–274 (1968).

1997

1996

1985

R. F. Wuerker, D. A. Hill, “Holographic microscopy,” Opt. Eng. 24, 480–484 (1985).

1983

I. Weingärtner, “A holographic mirror objective,” Optik 65, 49–61 (1983).

1978

1968

H. Kogelnik, K. S. J. Pennington, “Holographic imaging through a random medium,” Opt. Soc. Am. 58, 273–274 (1968).

1966

J. Upatnieks, A. Vander Lugt, E. Leith, “Correction of lens aberrations by means of holograms,” Appl. Opt. 5, 589–593 (1966).

G. W. Ellis, “Holomicrography: transformation of image during reconstruction a posteriori,” Science 154, 1195–1197 (1966).

R. F. VanLigten, H. Osterberg, “Holographic microscopy,” Nature (London) 211, 282–283 (1966).

1965

1951

D. Gabor, “Microscopy by reconstructed wave fronts: II,” Proc. Phys. Soc. London Sect. B 64, 221–241 (1951).

1949

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. Phys. Soc. London Sect. A 197, 454–487 (1949).

Andersen, G.

Briones, R. A.

Ellis, G. W.

G. W. Ellis, “Holomicrography: transformation of image during reconstruction a posteriori,” Science 154, 1195–1197 (1966).

Gabor, D.

D. Gabor, “Microscopy by reconstructed wave fronts: II,” Proc. Phys. Soc. London Sect. B 64, 221–241 (1951).

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. Phys. Soc. London Sect. A 197, 454–487 (1949).

Haines, K. A.

Heflinger, L. O.

Hill, D. A.

R. F. Wuerker, D. A. Hill, “Holographic microscopy,” Opt. Eng. 24, 480–484 (1985).

Kogelnik, H.

H. Kogelnik, K. S. J. Pennington, “Holographic imaging through a random medium,” Opt. Soc. Am. 58, 273–274 (1968).

Laude, J. P.

J. P. Laude, D. Lepére, “Latest developments in high resolution aplanetic holographic objectives,” in Developments in Semiconductor Microlithography III, R. L. Ruddell, D. Ciarlo, J. Dey, K. Hoeppner, eds., Proc. SPIE135, 68–76 (1978).

Leith, E.

Leith, E. N.

Lepére, D.

J. P. Laude, D. Lepére, “Latest developments in high resolution aplanetic holographic objectives,” in Developments in Semiconductor Microlithography III, R. L. Ruddell, D. Ciarlo, J. Dey, K. Hoeppner, eds., Proc. SPIE135, 68–76 (1978).

Munch, J.

Osterberg, H.

R. F. VanLigten, H. Osterberg, “Holographic microscopy,” Nature (London) 211, 282–283 (1966).

Pennington, K. S. J.

H. Kogelnik, K. S. J. Pennington, “Holographic imaging through a random medium,” Opt. Soc. Am. 58, 273–274 (1968).

Upatnieks, J.

Vander Lugt, A.

VanLigten, R. F.

R. F. VanLigten, H. Osterberg, “Holographic microscopy,” Nature (London) 211, 282–283 (1966).

Veitch, P.

Weingärtner, I.

I. Weingärtner, “A holographic mirror objective,” Optik 65, 49–61 (1983).

Wuerker, R. F.

R. F. Wuerker, D. A. Hill, “Holographic microscopy,” Opt. Eng. 24, 480–484 (1985).

R. A. Briones, L. O. Heflinger, R. F. Wuerker, “Holographic microscopy,” Appl. Opt. 17, 944–950 (1978).

Appl. Opt.

J. Opt. Soc. Am.

Nature (London)

R. F. VanLigten, H. Osterberg, “Holographic microscopy,” Nature (London) 211, 282–283 (1966).

Opt. Eng.

R. F. Wuerker, D. A. Hill, “Holographic microscopy,” Opt. Eng. 24, 480–484 (1985).

Opt. Soc. Am.

H. Kogelnik, K. S. J. Pennington, “Holographic imaging through a random medium,” Opt. Soc. Am. 58, 273–274 (1968).

Optik

I. Weingärtner, “A holographic mirror objective,” Optik 65, 49–61 (1983).

Proc. Phys. Soc. London Sect. A

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. Phys. Soc. London Sect. A 197, 454–487 (1949).

Proc. Phys. Soc. London Sect. B

D. Gabor, “Microscopy by reconstructed wave fronts: II,” Proc. Phys. Soc. London Sect. B 64, 221–241 (1951).

Science

G. W. Ellis, “Holomicrography: transformation of image during reconstruction a posteriori,” Science 154, 1195–1197 (1966).

Other

J. P. Laude, D. Lepére, “Latest developments in high resolution aplanetic holographic objectives,” in Developments in Semiconductor Microlithography III, R. L. Ruddell, D. Ciarlo, J. Dey, K. Hoeppner, eds., Proc. SPIE135, 68–76 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Recording. Laser light is spatially filtered (s.f.) to illuminate the objective lens that is then imaged onto the film. A hologram is recorded with a plane-wave reference beam. The dashed line indicates the possible inclusion of a vacuum window. (b) Reconstruction. With the setup unchanged, the object beam reconstructs the original reference beam. (c) Imaging. Light from an object placed at the pinhole position reconstructs the reference beam that can be focused to form an unaberrated image.

Fig. 2
Fig. 2

(a) Focal spot of the reconstructed beam. (b) Interference pattern of the reconstructed beam against a plane wave showing <λ/10 wave-front error. (c) Image of a sinusoidal grating (1130 lines/mm) in transmission. (d) Image of a microcircuit in reflection. The tracks are approximately 3 μm wide.

Fig. 3
Fig. 3

Images showing the effect of uncorrected off-axis aberrations over a large field of view: (a) blood cells, (b) array of 5-μm holes.

Fig. 4
Fig. 4

Reflecting microscope. The recording and the replay setups are shown for a holographically corrected microscope with an off-axis objective element.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ 2 = | λ 2 - λ 1 | λ 2   ϕ 1 .

Metrics