## Abstract

Designs for flexible, high-power-density, remote irradiation
systems are presented. Applications include industrial infrared
heating such as in semiconductor processing, alternatives to laser
light for certain medical procedures, and general remote
high-brightness lighting. The high power densities inherent to the
small active radiating regions of conventional metal-halide, halogen,
xenon, microwave-sulfur, and related lamps can be restored with
nonimaging concentrators with little loss of power. These high flux
levels can then be transported at high transmissivity with light
channels such as optical fibers or lightpipes, and reshaped into
luminaires that can deliver prescribed angular and spatial flux
distributions onto desired targets. Details for nominally two- and
three-dimensional systems are developed, along with estimates of
optical performance.

© 1998 Optical Society of America

Full Article |

PDF Article
### Equations (9)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$C=\frac{\mathrm{entrance}\mathrm{aperture}}{\mathrm{absorber}}=\frac{2Rsin\left(\mathrm{\pi}/N\right)}{2\mathrm{\pi}r/N}=\frac{\mathit{NR}}{\mathrm{\pi}r}sin\left(\mathrm{\pi}/N\right).$$
(2)
$${f}_{0}=\frac{A}{{\left({A}^{2}+{H}^{2}\right)}^{1/2}}\left(H,A\gg a\right).$$
(3)
$${f}_{1}=\frac{r}{H+\left[Rcos\left(\mathrm{\pi}/N\right)\right]}\hspace{1em}\left(H,R\gg a\right).$$
(4)
$$r\mathrm{\theta}+{l}_{1}+{\mathit{nl}}_{2}+{l}_{3}+{l}_{4}=\mathrm{constant},$$
(5)
$$f\mathrm{number}=\frac{k}{2sin\left(\mathrm{\pi}/N\right)},$$
(6)
$$C/{C}_{max}=1-\left\{\frac{5}{\mathrm{\pi}}\left[\mathrm{\beta}-sin\left(\mathrm{\beta}\right)cos\left(\mathrm{\beta}\right)\right]\right\},$$
(7)
$$\mathrm{collection}\mathrm{efficiency}=\frac{sin\left(\mathrm{\beta}\right)+\frac{\left(\mathrm{\pi}/5\right)-\mathrm{\beta}}{cos\left(\mathrm{\beta}\right)}}{tan\left(\mathrm{\pi}/5\right)cos\left(\mathrm{\beta}\right)},$$
(8)
$$cos\left(\mathrm{\beta}\right)=\frac{cos\left(\mathrm{\pi}/5\right)}{R\prime /{R}_{max}\prime},1\ge R\prime /{R}_{max}\prime \ge cos\left(\mathrm{\pi}/5\right).$$
(9)
$$r\mathrm{\theta}+{l}_{1}+n\left({l}_{2}+{l}_{3}\right)=\mathrm{constant}.$$