Abstract

A lineal illuminating system based on an optical fiber array is studied. It can be applied to automatic industrial inspection systems, e.g., those used for chromatic classification of ceramic floor tiles. Improvement in the existing system’s performance is achieved by using a collimated beam, as shown by both photometric analysis and experimental results. This system has been implemented as part of a real-time controlling tool in a production line.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Peñaranda, “Sistema de visión artificial para la clasificación ‘on-line’ por color y textura de piezas de ‘Gres porcelanico’,” Ph.D. thesis (Universidad de Navarra, San Sebastian, Spain, 1997).
  2. J. A. Peñaranda, A. P. Pobil, M. A. Serna, “Classification system for pieces of Porcelanatto based on computer vision,” in Automated 3D and 2D Vision, R. Ahlers, D. W. Braggins, G. W. Kamerman, eds., Proc. SPIE2249, 339–348 (1994).
    [CrossRef]
  3. J. D. Rees, W. Lama, “Some radiometric properties of gradient-index fiber lenses,” Appl. Opt. 19, 1065–1069 (1990).
    [CrossRef]
  4. M. Kawazu, Y. Ogura, “Application of gradient-index fiber arrays to copying machines,” Appl. Opt. 19, 1105–1112 (1980).
    [CrossRef] [PubMed]
  5. Product Bulletin 4001 (Fostec Inc., 4950-C, Eisenhower Avenue, Alexandria, Va., 1995).

1990

1980

Kawazu, M.

Lama, W.

Ogura, Y.

Peñaranda, J. A.

J. A. Peñaranda, A. P. Pobil, M. A. Serna, “Classification system for pieces of Porcelanatto based on computer vision,” in Automated 3D and 2D Vision, R. Ahlers, D. W. Braggins, G. W. Kamerman, eds., Proc. SPIE2249, 339–348 (1994).
[CrossRef]

J. A. Peñaranda, “Sistema de visión artificial para la clasificación ‘on-line’ por color y textura de piezas de ‘Gres porcelanico’,” Ph.D. thesis (Universidad de Navarra, San Sebastian, Spain, 1997).

Pobil, A. P.

J. A. Peñaranda, A. P. Pobil, M. A. Serna, “Classification system for pieces of Porcelanatto based on computer vision,” in Automated 3D and 2D Vision, R. Ahlers, D. W. Braggins, G. W. Kamerman, eds., Proc. SPIE2249, 339–348 (1994).
[CrossRef]

Rees, J. D.

Serna, M. A.

J. A. Peñaranda, A. P. Pobil, M. A. Serna, “Classification system for pieces of Porcelanatto based on computer vision,” in Automated 3D and 2D Vision, R. Ahlers, D. W. Braggins, G. W. Kamerman, eds., Proc. SPIE2249, 339–348 (1994).
[CrossRef]

Appl. Opt.

Other

J. A. Peñaranda, “Sistema de visión artificial para la clasificación ‘on-line’ por color y textura de piezas de ‘Gres porcelanico’,” Ph.D. thesis (Universidad de Navarra, San Sebastian, Spain, 1997).

J. A. Peñaranda, A. P. Pobil, M. A. Serna, “Classification system for pieces of Porcelanatto based on computer vision,” in Automated 3D and 2D Vision, R. Ahlers, D. W. Braggins, G. W. Kamerman, eds., Proc. SPIE2249, 339–348 (1994).
[CrossRef]

Product Bulletin 4001 (Fostec Inc., 4950-C, Eisenhower Avenue, Alexandria, Va., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the automatic classification of planar surfaces in an industrial production line. We can see the coordinate system.

Fig. 2
Fig. 2

Effect of vertical surface displacements on the irradiance measured by the CCD camera. Note the irradiance losses due to the horizontal translation of the light profile when the surface is displaced vertically.

Fig. 3
Fig. 3

Irradiance profile at the image plane of the illumination system in the original (commercial) configuration. Note the sharpness of this profile, which must produce great irradiance changes with vertical displacements of the surface.

Fig. 4
Fig. 4

Irradiance profiles of the light beam at a planar screen, obtained by numerical simulation for several distances between the light source and the lens: (a) 24 mm, which corresponds to a collimated beam; (b) 26 mm; (c) 27 mm; (d) 28 mm. For (b), (c), and (d), a converging beam reaches the screen.

Fig. 5
Fig. 5

Experimental irradiance profiles of the collimated beam for several distances between the screen and the lens.

Tables (1)

Tables Icon

Table 1 Collimated Beam Characteristics

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I k       E λ ρ λ R k λ d λ k = R , G , B .
μ = k = 1 N z k - m 2 h z k ,
E x max + Δ h / tan α ,
E x max + ω = 0.1 E x max .

Metrics