Abstract

In laser projection systems the observer in the far field of the image points on the screen will recognize serious speckle noise. There are many methods to reduce or eliminate speckles in the near field by reducing or eliminating temporal or spatial coherence of the laser. But for the far field it is hardly possible to change the coherence properties of laser sources so that speckles will disappear. We propose a new method for eliminating speckles in the far field by using a diffractive optical element. The intensity modulation depth in the far-field speckle pattern can be reduced to a few percent while good beam quality is preserved.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, Berlin, 1975), pp. 9–76.
    [CrossRef]
  2. N. George, A. Jian, “Speckle reduction using multiple tones of illumination,” Appl. Opt. 12, 1202–1212 (1973).
    [CrossRef] [PubMed]
  3. S. Jutamulia, T. Asakura, H. Ambar, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).
  4. B. Dingel, S. Kawata, S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).
  5. K. I. Sato, K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. COM-29, 1017–1024 (1981).
    [CrossRef]
  6. C. Saloma, S. Kawata, S. Minami, “Laser-diode microscope that generates weakly speckled images,” Opt. Lett. 15, 203–205 (1990).
    [CrossRef] [PubMed]
  7. B. Dingel, S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18, 549–551 (1993).
    [CrossRef] [PubMed]
  8. F. V. Kowalski, P. D. Hale, S. J. Shattil, “Broadband continuous-wave laser,” Opt. Lett. 13, 622–624 (1988).
    [CrossRef] [PubMed]
  9. P. I. Richter, T. W. Hänsch, “Diode lasers in external cavities with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991).
    [CrossRef]
  10. S. Lowenthal, D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. 61, 847–851 (1971).
    [CrossRef]
  11. T. McKechnie, “Reduction of speckle by a moving aperture-first order statistics,” Opt. Commun. 13, 35–39 (1975).
    [CrossRef]
  12. H. Ambar, Y. Aoki, N. Takai, T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38, 71–78 (1985).
    [CrossRef]
  13. H. Kiemle, U. Wolff, “Application de cristaux liquides en holographie optique,” Opt. Commun. 3, 26–28 (1971).
    [CrossRef]
  14. W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Son. Ultrason. SU-14, 123–134 (1967).
    [CrossRef]
  15. Y. Imai, Y. Ohtsuka, “Laser speckle reduction by ultrasonic modulation,” Opt. Commun. 27, 18–22 (1978).
    [CrossRef]
  16. E. G. Rawson, A. B. Nafarrate, R. E. Norton, J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66, 1290–1294 (1976).
    [CrossRef]
  17. T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
    [CrossRef]
  18. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
    [CrossRef]
  19. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for determination of phase from image and diffraction plane pictures,” Optik 35, 237–266 (1972).
  20. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).
    [CrossRef]
  21. D. Daly, S. M. Hodson, M. C. Hutley, “Fan-out grating with a continuous profile,” Opt. Commun. 82, 183–187 (1991).
    [CrossRef]
  22. B. Goebel, L. L. Wang, T. Tschudi, “Multilayer technology for diffractive optical elements,” Appl. Opt. 35, 4490–4493 (1996).
    [CrossRef] [PubMed]
  23. D. Prongué, H. P. Herzig, R. Dändliker, M. T. Gate, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706–5711 (1992).
    [CrossRef]
  24. M. Larsson, M. Ekberg, F. Nikolajeff, S. Hård, “Successive development optimization of resist kinoforms manufactured with direct-writing, electron-beam lithography,” Appl. Opt. 33, 1176–1179 (1994).
    [CrossRef] [PubMed]
  25. M. T. Gale, M. Rossi, H. Schütz, P. Ehbets, H. P. Herzig, D. Prongué, “Continuous-relief diffractive optical elements for two-dimensional array generation,” Appl. Opt. 32, 2526–2533 (1993).
    [CrossRef] [PubMed]
  26. A. Vasara, M. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, S. Kuisma, “Binary surface-relief gratings for array illumination in digital optics,” Appl. Opt. 31, 3320–3336 (1992).
    [CrossRef] [PubMed]

1996 (2)

T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[CrossRef]

B. Goebel, L. L. Wang, T. Tschudi, “Multilayer technology for diffractive optical elements,” Appl. Opt. 35, 4490–4493 (1996).
[CrossRef] [PubMed]

1994 (1)

1993 (3)

1992 (2)

1991 (2)

D. Daly, S. M. Hodson, M. C. Hutley, “Fan-out grating with a continuous profile,” Opt. Commun. 82, 183–187 (1991).
[CrossRef]

P. I. Richter, T. W. Hänsch, “Diode lasers in external cavities with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991).
[CrossRef]

1990 (1)

1988 (1)

1985 (2)

H. Ambar, Y. Aoki, N. Takai, T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38, 71–78 (1985).
[CrossRef]

S. Jutamulia, T. Asakura, H. Ambar, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).

1981 (1)

K. I. Sato, K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. COM-29, 1017–1024 (1981).
[CrossRef]

1980 (1)

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
[CrossRef]

1978 (1)

Y. Imai, Y. Ohtsuka, “Laser speckle reduction by ultrasonic modulation,” Opt. Commun. 27, 18–22 (1978).
[CrossRef]

1976 (2)

1975 (1)

T. McKechnie, “Reduction of speckle by a moving aperture-first order statistics,” Opt. Commun. 13, 35–39 (1975).
[CrossRef]

1973 (1)

1972 (1)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for determination of phase from image and diffraction plane pictures,” Optik 35, 237–266 (1972).

1971 (2)

H. Kiemle, U. Wolff, “Application de cristaux liquides en holographie optique,” Opt. Commun. 3, 26–28 (1971).
[CrossRef]

S. Lowenthal, D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. 61, 847–851 (1971).
[CrossRef]

1967 (1)

W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Son. Ultrason. SU-14, 123–134 (1967).
[CrossRef]

Ambar, H.

S. Jutamulia, T. Asakura, H. Ambar, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).

H. Ambar, Y. Aoki, N. Takai, T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38, 71–78 (1985).
[CrossRef]

Aoki, Y.

H. Ambar, Y. Aoki, N. Takai, T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38, 71–78 (1985).
[CrossRef]

Asakura, T.

T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[CrossRef]

S. Jutamulia, T. Asakura, H. Ambar, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).

H. Ambar, Y. Aoki, N. Takai, T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38, 71–78 (1985).
[CrossRef]

Asatani, K.

K. I. Sato, K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. COM-29, 1017–1024 (1981).
[CrossRef]

Cook, B. D.

W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Son. Ultrason. SU-14, 123–134 (1967).
[CrossRef]

Daly, D.

D. Daly, S. M. Hodson, M. C. Hutley, “Fan-out grating with a continuous profile,” Opt. Commun. 82, 183–187 (1991).
[CrossRef]

Dändliker, R.

Dingel, B.

B. Dingel, S. Kawata, S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).

B. Dingel, S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18, 549–551 (1993).
[CrossRef] [PubMed]

Ehbets, P.

Ekberg, M.

Fienup, J. R.

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
[CrossRef]

Gale, M. T.

Gate, M. T.

George, N.

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for determination of phase from image and diffraction plane pictures,” Optik 35, 237–266 (1972).

Goebel, B.

Goodman, J. W.

Hale, P. D.

Hänsch, T. W.

P. I. Richter, T. W. Hänsch, “Diode lasers in external cavities with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991).
[CrossRef]

Hård, S.

Herzig, H. P.

Hodson, S. M.

D. Daly, S. M. Hodson, M. C. Hutley, “Fan-out grating with a continuous profile,” Opt. Commun. 82, 183–187 (1991).
[CrossRef]

Hutley, M. C.

D. Daly, S. M. Hodson, M. C. Hutley, “Fan-out grating with a continuous profile,” Opt. Commun. 82, 183–187 (1991).
[CrossRef]

Ichikawa, H.

Imai, Y.

Y. Imai, Y. Ohtsuka, “Laser speckle reduction by ultrasonic modulation,” Opt. Commun. 27, 18–22 (1978).
[CrossRef]

Iwai, T.

T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[CrossRef]

Jaakkola, T.

Jian, A.

Joyeux, D.

Jutamulia, S.

S. Jutamulia, T. Asakura, H. Ambar, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).

Kawata, S.

Kiemle, H.

H. Kiemle, U. Wolff, “Application de cristaux liquides en holographie optique,” Opt. Commun. 3, 26–28 (1971).
[CrossRef]

Klein, W. R.

W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Son. Ultrason. SU-14, 123–134 (1967).
[CrossRef]

Kowalski, F. V.

Kuisma, S.

Larsson, M.

Lowenthal, S.

McKechnie, T.

T. McKechnie, “Reduction of speckle by a moving aperture-first order statistics,” Opt. Commun. 13, 35–39 (1975).
[CrossRef]

Miller, J. M.

Minami, S.

B. Dingel, S. Kawata, S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).

C. Saloma, S. Kawata, S. Minami, “Laser-diode microscope that generates weakly speckled images,” Opt. Lett. 15, 203–205 (1990).
[CrossRef] [PubMed]

Nafarrate, A. B.

Nikolajeff, F.

Noponen, E.

Norton, R. E.

Ohtsuka, Y.

Y. Imai, Y. Ohtsuka, “Laser speckle reduction by ultrasonic modulation,” Opt. Commun. 27, 18–22 (1978).
[CrossRef]

Prongué, D.

Rawson, E. G.

Richter, P. I.

P. I. Richter, T. W. Hänsch, “Diode lasers in external cavities with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991).
[CrossRef]

Rossi, M.

Saloma, C.

Sato, K. I.

K. I. Sato, K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. COM-29, 1017–1024 (1981).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for determination of phase from image and diffraction plane pictures,” Optik 35, 237–266 (1972).

Schütz, H.

Shattil, S. J.

Taghizadeh, M.

Takai, N.

H. Ambar, Y. Aoki, N. Takai, T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38, 71–78 (1985).
[CrossRef]

Tschudi, T.

Turunen, J.

Vasara, A.

Wang, L. L.

Westerholm, J.

Wolff, U.

H. Kiemle, U. Wolff, “Application de cristaux liquides en holographie optique,” Opt. Commun. 3, 26–28 (1971).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

H. Ambar, Y. Aoki, N. Takai, T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38, 71–78 (1985).
[CrossRef]

IEEE Trans. Commun. (1)

K. I. Sato, K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. COM-29, 1017–1024 (1981).
[CrossRef]

IEEE Trans. Son. Ultrason. (1)

W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Son. Ultrason. SU-14, 123–134 (1967).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Commun. (5)

Y. Imai, Y. Ohtsuka, “Laser speckle reduction by ultrasonic modulation,” Opt. Commun. 27, 18–22 (1978).
[CrossRef]

D. Daly, S. M. Hodson, M. C. Hutley, “Fan-out grating with a continuous profile,” Opt. Commun. 82, 183–187 (1991).
[CrossRef]

H. Kiemle, U. Wolff, “Application de cristaux liquides en holographie optique,” Opt. Commun. 3, 26–28 (1971).
[CrossRef]

P. I. Richter, T. W. Hänsch, “Diode lasers in external cavities with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991).
[CrossRef]

T. McKechnie, “Reduction of speckle by a moving aperture-first order statistics,” Opt. Commun. 13, 35–39 (1975).
[CrossRef]

Opt. Eng. (1)

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980).
[CrossRef]

Opt. Lett. (3)

Optik (3)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for determination of phase from image and diffraction plane pictures,” Optik 35, 237–266 (1972).

S. Jutamulia, T. Asakura, H. Ambar, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).

B. Dingel, S. Kawata, S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).

Proc. IEEE (1)

T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996).
[CrossRef]

Other (1)

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, Berlin, 1975), pp. 9–76.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Speckle distributions and speckle sizes: (a) near field, (b) far field.

Fig. 2
Fig. 2

Principle of the method: (a) laser beam from projection, (b) beamlets coming from the DOE.

Fig. 3
Fig. 3

Experimental setup for speckle elimination: (a) with a rotating DOE, (b) with a scanner and a static DOE. L’s, lenses.

Fig. 4
Fig. 4

Structure of the DOE.

Fig. 5
Fig. 5

Speckle patterns from a He–Ne laser: (a) with a static DOE, (b) with a DOE rotating at a speed of 5 rps.

Fig. 6
Fig. 6

Speckle contrast: (a) without a scanner but with a rotating DOE, speckle contrast of 3.6–4%; (b) with a scanner and with a static DOE, speckle contrast of 3.8% and with a rotating DOE, speckle contrast of 3.1–3.4%.

Fig. 7
Fig. 7

Speckle patterns from an Ar-laser: (a) with only a scanned laser beam, (b) with a scanned laser beam and a static DOE, (c) with a scanned laser beam and a DOE rotating at speed of 5 rps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f x ,   y = m = 1 M n = 1 N   A mn exp i ϕ mn δ x - x m ,   y - y n ,
F τ ,   ξ = Fourier | f x ,   y | = - -   f x ,   y exp 2 π i x τ + y ξ d x d y ,

Metrics