Abstract

A heterodyne optical measurement system for studying the phase shift of surface plasmon resonance (SPR) is presented. The system utilizes a frequency-stabilized Zeeman laser as a detection light source and is suitable for real-time phase measurement in SPR-sensing applications. The phase shift in an angular dispersion SPR excitation setup was measured ranging from +180° to -120° around the SPR excitation region. The experimental results fit well with the theoretical analysis. Compared with the reflection coefficient variation that is widely investigated in SPR studies, phase shift is estimated to provide a higher sensitivity to sensor systems and more information about the resonance phenomenon.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. De Bruijin, B. S. F. Altenburg, R. P. H. Kooyman, J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Opt. Commun. 82, 425–432 (1991).
    [CrossRef]
  2. M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20, 968–970 (1984).
    [CrossRef]
  3. J. W. Sadowski, J. Lekkala, I. Vikholm, “Biosensors based on surface plasmons excited in non-noble metals,” Biosens. Bioelectron. 6, 439–444 (1991).
    [CrossRef]
  4. K. Matsubara, S. Kawata, S. Minami, “A compact surface plasmon resonance sensor for measurement of water in process,” Appl. Spectrosc. 42, 1375–1379 (1988).
    [CrossRef]
  5. R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors Actuators B 12, 213–220 (1993).
    [CrossRef]
  6. M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sensors Actuators B 11, 455–459 (1993).
    [CrossRef]
  7. F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
    [CrossRef]
  8. G. J. Kovacs, “Optical excitation of surface plasmon-polaritons in layered media,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, New York, 1982), pp. 143–200.
  9. E. Kretschmann, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch., Teil A 23, 2135–2136 (1968).

1993

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors Actuators B 12, 213–220 (1993).
[CrossRef]

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sensors Actuators B 11, 455–459 (1993).
[CrossRef]

1991

H. E. De Bruijin, B. S. F. Altenburg, R. P. H. Kooyman, J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Opt. Commun. 82, 425–432 (1991).
[CrossRef]

J. W. Sadowski, J. Lekkala, I. Vikholm, “Biosensors based on surface plasmons excited in non-noble metals,” Biosens. Bioelectron. 6, 439–444 (1991).
[CrossRef]

1988

1984

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20, 968–970 (1984).
[CrossRef]

1976

F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[CrossRef]

1968

E. Kretschmann, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch., Teil A 23, 2135–2136 (1968).

Abeles, F.

F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[CrossRef]

Alegret, S.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sensors Actuators B 11, 455–459 (1993).
[CrossRef]

Alonso-chamarro, J.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sensors Actuators B 11, 455–459 (1993).
[CrossRef]

Altenburg, B. S. F.

H. E. De Bruijin, B. S. F. Altenburg, R. P. H. Kooyman, J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Opt. Commun. 82, 425–432 (1991).
[CrossRef]

De Bruijin, H. E.

H. E. De Bruijin, B. S. F. Altenburg, R. P. H. Kooyman, J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Opt. Commun. 82, 425–432 (1991).
[CrossRef]

Flanagan, M. T.

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20, 968–970 (1984).
[CrossRef]

Graces, I.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sensors Actuators B 11, 455–459 (1993).
[CrossRef]

Greve, J.

H. E. De Bruijin, B. S. F. Altenburg, R. P. H. Kooyman, J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Opt. Commun. 82, 425–432 (1991).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors Actuators B 12, 213–220 (1993).
[CrossRef]

Kawata, S.

Kooyman, R. P. H.

H. E. De Bruijin, B. S. F. Altenburg, R. P. H. Kooyman, J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Opt. Commun. 82, 425–432 (1991).
[CrossRef]

Kovacs, G. J.

G. J. Kovacs, “Optical excitation of surface plasmon-polaritons in layered media,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, New York, 1982), pp. 143–200.

Kretschmann, E.

E. Kretschmann, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch., Teil A 23, 2135–2136 (1968).

Lekkala, J.

J. W. Sadowski, J. Lekkala, I. Vikholm, “Biosensors based on surface plasmons excited in non-noble metals,” Biosens. Bioelectron. 6, 439–444 (1991).
[CrossRef]

Lopez, R.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sensors Actuators B 11, 455–459 (1993).
[CrossRef]

Manuel, M.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sensors Actuators B 11, 455–459 (1993).
[CrossRef]

Mateo, J.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sensors Actuators B 11, 455–459 (1993).
[CrossRef]

Matsubara, K.

Minami, S.

Pantell, R. H.

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20, 968–970 (1984).
[CrossRef]

Raether, H.

E. Kretschmann, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch., Teil A 23, 2135–2136 (1968).

Sadowski, J. W.

J. W. Sadowski, J. Lekkala, I. Vikholm, “Biosensors based on surface plasmons excited in non-noble metals,” Biosens. Bioelectron. 6, 439–444 (1991).
[CrossRef]

Vidal, B.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sensors Actuators B 11, 455–459 (1993).
[CrossRef]

Vikholm, I.

J. W. Sadowski, J. Lekkala, I. Vikholm, “Biosensors based on surface plasmons excited in non-noble metals,” Biosens. Bioelectron. 6, 439–444 (1991).
[CrossRef]

Yee, S. S.

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors Actuators B 12, 213–220 (1993).
[CrossRef]

Appl. Spectrosc.

Biosens. Bioelectron.

J. W. Sadowski, J. Lekkala, I. Vikholm, “Biosensors based on surface plasmons excited in non-noble metals,” Biosens. Bioelectron. 6, 439–444 (1991).
[CrossRef]

Electron. Lett.

M. T. Flanagan, R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. 20, 968–970 (1984).
[CrossRef]

Opt. Commun.

H. E. De Bruijin, B. S. F. Altenburg, R. P. H. Kooyman, J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Opt. Commun. 82, 425–432 (1991).
[CrossRef]

Sensors Actuators B

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors Actuators B 12, 213–220 (1993).
[CrossRef]

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sensors Actuators B 11, 455–459 (1993).
[CrossRef]

Surf. Sci.

F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[CrossRef]

Z. Naturforsch., Teil A

E. Kretschmann, H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch., Teil A 23, 2135–2136 (1968).

Other

G. J. Kovacs, “Optical excitation of surface plasmon-polaritons in layered media,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, New York, 1982), pp. 143–200.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wave vectors of incident light and SPW.

Fig. 2
Fig. 2

(a) Simulation results of the phase shift and reflection coefficient variation versus incident angle around the excitation point of SPR (solid curve, phase shift; dotted curve, reflection coefficient with different Ag thicknesses; A, d = 45 nm; B, d = 40 nm; C, d = 35 nm). (b) Simulation results of the phase shift and reflection coefficient variation versus incident angle around the excitation point of SPR (solid curve, phase shift; dotted curve, reflection coefficient with different Ag thicknesses; A, d = 55 nm; B, d = 60 nm; C, d = 65 nm).

Fig. 3
Fig. 3

Phase and reflection changes around the SPR excitation point versus the changes in the RI of air surrounding metal layer (solid curve, reflection changes; dashed curve, phase changes).

Fig. 4
Fig. 4

Experimental setup for the optical phase detection of SPR (laser, Zeeman laser; C, frequency stabilization system; S, beam splitter; phase, phase meter; reflection, reflection coefficient measurement; P1 and P2, polarizers; D1 and D2, p-i-n detectors; P, ZF6 prism; B, glass base plate; L, RI matching liquid).

Fig. 5
Fig. 5

(a) Measured phase and reflection coefficient variation (solid curve, calculated phase variation fitting curve; open circles, measured phase shift; dashed curve, calculated reflection fitting curves; plus signs, measured reflection coefficient). Ag-layer thickness is estimated to be 43 nm. (b) Measured phase variation (solid curve, calculated phase variation fitting curve; open circles, measured phase variation). Ag-layer thickness is estimated to be 53.8 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k x = k 0 n d sin θ = k sp ,
k sp = k 0 ε d ε m / ε d + ε m 0.5 ,
r p = r 12 + r 23 exp 2 ik z 2 d 2 / 1 + r 12 r 23 exp 2 ik z 2 d 2 ,
r 12 = Z 1 - Z 2 / Z 1 + Z 2 , r 23 = Z 2 - Z 3 / Z 2 + Z 3 , Z i = ε i / k zi ,   k zi = ε i ω / c 2 - k 1 0.5 , k 1 = ω / c sin θ ε 1 0.5 ,   i = 1 ,   2 ,   3 .
E p = E p 0 exp - i ω 1 t ,   E s = E 0 s exp - i ω 2 t .
I r E p 0 E s 0 cos ω 1 - ω 2 t
E pr = r p E p = | r p | exp i ϕ E p 0 exp - i ω 1 t , E sr = r s E s = E s 0 exp - i ω 2 t .
I m | r p | E p 0 E s 0 cos ω 1 - ω 2 t + ϕ .

Metrics