Abstract

The Fourier transform relationship between the reflected light from a Bragg grating and the complex spatial modulation of the Bragg grating is used to produce a distributed strain sensing system. A tunable external cavity diode laser along with a reference reflector in an optical fiber are used to produce a measurement of the phase and amplitude of the reflected light from the modulated Bragg grating as a function of wavelength. The system is demonstrated with 22 Bragg gratings in a single fiber on a cantilever beam and compared with foil strain gauge readings.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  2. M. A. Davis, A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13, 1289–1295 (1995).
    [CrossRef]
  3. A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
    [CrossRef]
  4. S. Huang, M. M. Ohn, R. M. Measures, “Phase-based Bragg intragrating distributed strain sensor,” Appl. Opt. 35, 1135–1142 (1996).
    [CrossRef] [PubMed]
  5. A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fibre interrogation technique for fibre Bragg sensors using a biconical fibre filter,” Electron. Lett. 32, 382–383 (1996).
    [CrossRef]
  6. C. G. Askins, M. A. Putnam, G. M. Williams, E. J. Freebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
    [CrossRef] [PubMed]
  7. A. J. Rogers, V. A. Handerek, “Frequency-derived distributed optical-fiber sensing: Rayleigh backscatter analysis,” Appl. Opt. 31, 4091–4095 (1992).
    [CrossRef] [PubMed]
  8. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
    [CrossRef]
  9. A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
    [CrossRef]
  10. M. A. Davis, A. D. Kersey, “Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering,” in Distributed and Multiplexed Fiber Optic Sensors VI, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE2838, 114–123 (1996).
    [CrossRef]
  11. M. Froggatt, “Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber,” Appl. Opt. 35, 5162–5164 (1996).
    [CrossRef] [PubMed]
  12. V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57, 635–651 (1978).
  13. S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, “Fabrication of single-mode fibres exhibiting extremely low polarisation birefringence,” Electron. Lett. 15, 309–311 (1979).
    [CrossRef]
  14. W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989).
    [CrossRef]

1996

1995

M. A. Davis, A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13, 1289–1295 (1995).
[CrossRef]

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

1994

1992

A. J. Rogers, V. A. Handerek, “Frequency-derived distributed optical-fiber sensing: Rayleigh backscatter analysis,” Appl. Opt. 31, 4091–4095 (1992).
[CrossRef] [PubMed]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

1989

1985

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

1979

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, “Fabrication of single-mode fibres exhibiting extremely low polarisation birefringence,” Electron. Lett. 15, 309–311 (1979).
[CrossRef]

1978

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57, 635–651 (1978).

Adams, M. J.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, “Fabrication of single-mode fibres exhibiting extremely low polarisation birefringence,” Electron. Lett. 15, 309–311 (1979).
[CrossRef]

Askins, C. G.

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Boiarski, A. A.

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Davis, M. A.

M. A. Davis, A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13, 1289–1295 (1995).
[CrossRef]

M. A. Davis, A. D. Kersey, “Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering,” in Distributed and Multiplexed Fiber Optic Sensors VI, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE2838, 114–123 (1996).
[CrossRef]

Ferreira, L. A.

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fibre interrogation technique for fibre Bragg sensors using a biconical fibre filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

Fink, T.

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

Freebele, E. J.

French, W. G.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57, 635–651 (1978).

Froggatt, M.

Glenn, W. H.

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Handerek, V. A.

Huang, S.

Kersey, A. D.

M. A. Davis, A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13, 1289–1295 (1995).
[CrossRef]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

M. A. Davis, A. D. Kersey, “Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering,” in Distributed and Multiplexed Fiber Optic Sensors VI, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE2838, 114–123 (1996).
[CrossRef]

Lobo Ribeiro, A. B.

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fibre interrogation technique for fibre Bragg sensors using a biconical fibre filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

Measures, R. M.

Meltz, G.

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Morey, W. W.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[CrossRef] [PubMed]

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Nilsson, N.

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

Norman, S. R.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, “Fabrication of single-mode fibres exhibiting extremely low polarisation birefringence,” Electron. Lett. 15, 309–311 (1979).
[CrossRef]

Ohn, M. M.

Payne, D. N.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, “Fabrication of single-mode fibres exhibiting extremely low polarisation birefringence,” Electron. Lett. 15, 309–311 (1979).
[CrossRef]

Pilate, G.

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Putnam, M. A.

Ramaswamy, V.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57, 635–651 (1978).

Rogers, A. J.

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Santos, J. L.

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fibre interrogation technique for fibre Bragg sensors using a biconical fibre filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

Smith, A. M.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, “Fabrication of single-mode fibres exhibiting extremely low polarisation birefringence,” Electron. Lett. 15, 309–311 (1979).
[CrossRef]

Standley, R. D.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57, 635–651 (1978).

Sze, D.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57, 635–651 (1978).

Tsvetkov, M.

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fibre interrogation technique for fibre Bragg sensors using a biconical fibre filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

Williams, G. M.

Appl. Opt.

Bell Syst. Tech. J.

V. Ramaswamy, R. D. Standley, D. Sze, W. G. French, “Polarization effects in short length, single mode fibers,” Bell Syst. Tech. J. 57, 635–651 (1978).

Electron. Lett.

S. R. Norman, D. N. Payne, M. J. Adams, A. M. Smith, “Fabrication of single-mode fibres exhibiting extremely low polarisation birefringence,” Electron. Lett. 15, 309–311 (1979).
[CrossRef]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High-resolution fiber-grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fibre interrogation technique for fibre Bragg sensors using a biconical fibre filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

IEEE Trans. Power Delivery

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

J. Lightwave Technol.

M. A. Davis, A. D. Kersey, “Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors,” J. Lightwave Technol. 13, 1289–1295 (1995).
[CrossRef]

Opt. Lett.

Other

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

M. A. Davis, A. D. Kersey, “Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering,” in Distributed and Multiplexed Fiber Optic Sensors VI, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE2838, 114–123 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of distributed Bragg grating strain sensing system. I/O, input–output.

Fig. 2
Fig. 2

Measured voltage as a function of sample number. Samples were taken 0.04085 pm apart.

Fig. 3
Fig. 3

Amplitude of the Fourier transform of the data shown in Fig. 2 with the important features identified.

Fig. 4
Fig. 4

Amplitude of the Fourier transform of the data shown in Fig. 2 over the region of fiber in which Bragg gratings were written.

Fig. 5
Fig. 5

Single section of an amplitude versus wavelength measurement covering roughly 0.17 nm, the range of a single continuous sweep.

Fig. 6
Fig. 6

Data processing used to construct the amplitude versus distance plots and the amplitude versus wavelength plots for each of the Bragg gratings. The dashed vertical lines select the range of spatial data in each plot that was transformed to produce the partial spectrum shown on the right.

Fig. 7
Fig. 7

Data processing used to produce smooth spectra for strain measurement.

Fig. 8
Fig. 8

Schematic of the locations of the Bragg gratings in the sensing optical fiber.

Fig. 9
Fig. 9

Beam on which the optical fiber with Bragg gratings and the foil strain gauges were placed.

Fig. 10
Fig. 10

Locations of the Bragg gratings and the foil strain gauges on the dual cantilever beam.

Fig. 11
Fig. 11

Strain measured by Bragg grating wavelength shift and foil strain gauges for each sensor location.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F ψ ψ * κ ˜ x 2 = a 2 δ x + 1 - a 2 β 2 8 - × κ * z + x 2 κ z d z + a 1 - a 2 β 2 i × κ * z 0 + x 2 - κ z 0 - x 2 ,
Δ β = π nL ref .
Δ λ λ 2 2 nL ref .
Δ λ min λ λ 2 π SNR L grat L ref ,
Δ λ b = λ b ε 1 - p e ,

Metrics