Abstract

A method of measuring strain over 30-cm intervals to an accuracy of 10 microstrain in unaltered low-loss communications-grade single-mode optical fiber is presented. The method uses a tunable external cavity diode laser to measure the reflected intensity of a reflector–fiber system as a function of wavelength. This measurement is performed with no strain applied to the fiber to produce a reference and then again after a strain has been induced. Cross correlation of the Rayleigh scatter spectra from a selected section of fiber in the strained and unstrained states determines the spectral shift resulting from the applied strain.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
    [CrossRef] [PubMed]
  2. T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. QE-18, 1624–1633 (1982).
    [CrossRef]
  3. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  4. A. J. Rogers, V. A. Handerek, “Frequency-derived distributed optical-fiber sensing: Rayleigh backscatter analysis,” Appl. Opt. 31, 4091–4095 (1992).
    [CrossRef] [PubMed]
  5. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
    [CrossRef]
  6. A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
    [CrossRef]
  7. M. A. Davis, A. D. Kersey, “Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering,” in Distributed and Multiplexed Fiber Optic Sensors VI, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE2838, 114–123 (1996).
    [CrossRef]
  8. U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
    [CrossRef]
  9. M. Froggatt, “Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber,” Appl. Opt. 35, 5162–5164 (1996).
    [CrossRef] [PubMed]
  10. K. O. Hill, “Aperiodic distributed-parameter waveguides for integrated optics,” Appl. Opt. 13, 1853–1856 (1974).
    [CrossRef] [PubMed]

1996 (1)

1995 (1)

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

1993 (1)

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

1992 (1)

1991 (1)

1989 (1)

1985 (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

1982 (1)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. QE-18, 1624–1633 (1982).
[CrossRef]

1974 (1)

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Boiarski, A. A.

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

Brinkmeyer, E.

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Claus, R. O.

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Davis, M. A.

M. A. Davis, A. D. Kersey, “Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering,” in Distributed and Multiplexed Fiber Optic Sensors VI, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE2838, 114–123 (1996).
[CrossRef]

Fink, T.

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

Froggatt, M.

Glenn, W. H.

Glombitza, U.

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Gunther, M. F.

Handerek, V. A.

Hill, K. O.

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. QE-18, 1624–1633 (1982).
[CrossRef]

Kersey, A. D.

M. A. Davis, A. D. Kersey, “Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering,” in Distributed and Multiplexed Fiber Optic Sensors VI, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE2838, 114–123 (1996).
[CrossRef]

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. QE-18, 1624–1633 (1982).
[CrossRef]

Meltz, G.

Morey, W. W.

Murphy, K. A.

Nilsson, N.

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

Ose, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. QE-18, 1624–1633 (1982).
[CrossRef]

Pilate, G.

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Rogers, A. J.

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

Vengsarkar, A. M.

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. QE-18, 1624–1633 (1982).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE J. Quantum Electron. QE-18, 1624–1633 (1982).
[CrossRef]

IEEE Trans. Power Delivery (1)

A. A. Boiarski, G. Pilate, T. Fink, N. Nilsson, “Temperature measurements in power plant equipment using distributed fiber optic sensing,” IEEE Trans. Power Delivery 10, 1771–1778 (1995).
[CrossRef]

J. Lightwave Technol. (1)

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Opt. Lett. (2)

Other (1)

M. A. Davis, A. D. Kersey, “Simultaneous measurement of temperature and strain using fiber Bragg gratings and Brillouin scattering,” in Distributed and Multiplexed Fiber Optic Sensors VI, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE2838, 114–123 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the apparatus used to measure the spectra of the Rayleigh backscatter. I/O, input–output.

Fig. 2
Fig. 2

Plot of the amplitude of the Rayleigh scatter as a function of distance of the optical fiber. The large spike at 1 m that is due to a reflection in the circulator and a smaller reflection from the end of the fiber are both visible. A spurious reflection at 5 m is also present.

Fig. 3
Fig. 3

System used to strain the optical fiber with minimal application of radial stress by use of two translation stages and two fixed blocks. Each 30-cm section as referred to in Figs. 4 and 5 are labeled here.

Fig. 4
Fig. 4

Cross-correlation results for compression, no load, and tension in the second section of the sensing fiber.

Fig. 5
Fig. 5

Comparison of the strain measured by the shift in the Rayleigh-scatter spectra and the strain as measured by the micrometer displacement of the translation stage for each 30-cm section of the sensing length.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

2 E z 2 + β 2 1 + Δ ε z ε E = 0 ,
E = E 0 exp i β z + Ψ z ,   β exp - i β z ,
d Ψ d z = β 2 i Δ ε z ε E 0 exp i 2 β z + Ψ z ,   β .
| Ψ z ,   β |     E 0 .
Ψ - ,   β = E 0 β 2 i - Δ ε z ε exp i 2 β z d z .
Ψ d β = E 0 β 2 i - Δ ε z ε exp i 2 β z d z + rE 0 exp i 2 β z 0 ,
I d = ε μ   Ψ d β Ψ d * β = ε μ   E 0 2 r 2 + β 2 4 - Δ ε z ε exp i 2 β z d z   - Δ ε z ε exp - i 2 β z d z + r   β 2   i exp i 2 β z 0 - Δ ε z ε exp - i 2 β z d z - exp - i 2 β z 0 - Δ ε z ε exp i 2 β z d z .
β 0 - Δ β β 0 + Δ β   I d β exp - i β x d β = 2 r 2 ε μ   E 0 2 Δ β   exp - i β 0 x sinc Δ β x + ε μ   E 0 2 β 0 2 4 ε 2 β 0 - Δ β β 0 + Δ β -   Δ ε z exp i 2 β z d z   -   Δ ε z exp - i 2 β z d z   exp - i β x d β + ε μ   E 0 2 r   β 0 2 ε   i   β 0 - Δ β β 0 + Δ β exp i 2 β z 0 -   Δ ε z exp - i 2 β z d z   exp - i β x - exp - i 2 β z 0 -   Δ ε z exp i 2 β z d z   exp - i β x d β ,
Δ ε ˜ ω = -   Δ ε z exp i ω z d z .
Δ ε ¯ z = 1 π 2 β 0 - Δ β 2 β 0 + Δ β   Δ ε ˜ ω exp - i ω z d ω
Δ ε ¯ z = 2 π β 0 - Δ β β 0 + Δ β -   Δ ε z exp - i 2 β z d z   exp i 2 β x d β .
β 0 - Δ β β 0 + Δ β   I d β exp - i β x d β = ε μ   E 0 2 2 r 2 Δ β   exp - i β 0 x sinc Δ β x + π   β 0 2 2 ε 2 -   Δ ε ¯ z Δ ε ¯ z - x 2 d z + π r   β 0 ε   i Δ ε ¯ z 0 - x 2 - Δ ε ¯ z 0 + x 2 .
β 0 2 ε -   Δ ε ¯ z Δ ε ¯ z - x 2 d z     r Δ ε ¯ z 0 - x 2 - Δ ε ¯ z 0 + x 2
β 0 - Δ β β 0 + Δ β   I d β exp - i β x d β = exp i β 0 x ε μ   E 0 2 r   π β 0 ε × i Δ ε ¯ z 0 - x 2 - Δ ε ¯ * z 0 + x 2 .
- Δ β Δ β   I d β - β 0 exp - i β x d β = E 0 2 r   c π β 0 ni   Δ ε ¯ * z 0 + x 2 ,
L range = π 2 n δ k λ 2 4 n δ λ ,
Ĩ m = 1 N j = 0 N - 1   I i exp - imj   2 π N .
L res = π 2 n Δ k λ 2 4 n Δ λ .
I j 1 I N - j 2 * = 1 2 π N m = m 1 m 2   Ĩ m 1 Ĩ m 2 * exp ijm   2 π N ,
L res ε res = λ 4 n ,
ε range = Δ λ λ 0 ,
δ λ = λ 2 2 nL ref 67   fm

Metrics