Abstract

A method of optical time-domain reflectrometry in optical fiber is described that uses a single distributed feedback diode laser and a reference reflector. When the period of the frequency modulation of the laser matches the time difference between the reference reflection and the reflection of interest an increase in the noise at the detector occurs. The locations of reflections within the fiber are then mapped to frequencies at which the noise at the detector increases. A sinusoidal frequency modulation is analyzed, and an experiment is described in which the system is used to measure the location and the wavelength of two Bragg gratings located 10 cm apart in an optical fiber. Wavelength measurement is accomplished by temperature tuning the diode laser.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  2. D. E. Vakman, ed., Sophisticated Signals and the Uncertainty Principle in Radar (Springer-Verlag, New York, 1968).
    [CrossRef]
  3. T. H. Bosselmann, R. Urlich, “High-accuracy position sensing with fiber-coupled white-light interferometers,” in Second International Conference on Optical Fiber Sensors, R. T. Kersten, R. Kist, eds., Proc. SPIE514, 361–364 (1984).
  4. W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry (IOFDR) distributed fiber optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988).
    [CrossRef]

1985 (1)

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Anderson, B. L.

W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry (IOFDR) distributed fiber optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988).
[CrossRef]

Bosselmann, T. H.

T. H. Bosselmann, R. Urlich, “High-accuracy position sensing with fiber-coupled white-light interferometers,” in Second International Conference on Optical Fiber Sensors, R. T. Kersten, R. Kist, eds., Proc. SPIE514, 361–364 (1984).

Fuhr, P. L.

W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry (IOFDR) distributed fiber optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988).
[CrossRef]

Mourou, G.

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Spillman, W. B.

W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry (IOFDR) distributed fiber optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988).
[CrossRef]

Strickland, D.

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Urlich, R.

T. H. Bosselmann, R. Urlich, “High-accuracy position sensing with fiber-coupled white-light interferometers,” in Second International Conference on Optical Fiber Sensors, R. T. Kersten, R. Kist, eds., Proc. SPIE514, 361–364 (1984).

Opt. Commun. (1)

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Other (3)

D. E. Vakman, ed., Sophisticated Signals and the Uncertainty Principle in Radar (Springer-Verlag, New York, 1968).
[CrossRef]

T. H. Bosselmann, R. Urlich, “High-accuracy position sensing with fiber-coupled white-light interferometers,” in Second International Conference on Optical Fiber Sensors, R. T. Kersten, R. Kist, eds., Proc. SPIE514, 361–364 (1984).

W. B. Spillman, P. L. Fuhr, B. L. Anderson, “Performance of integrated source/detector combinations for smart skins incoherent optical frequency domain reflectometry (IOFDR) distributed fiber optic sensors,” in Fiber Optic Smart Structures and Skins, E. Udd, ed., Proc. SPIE986, 106–118 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the period-matching system with a single-mode 1310-nm distributed feedback laser and single-mode optical fiber. DDS, direct digital synthesis.

Fig. 2
Fig. 2

Plot of the single-reflection response as a function of period length for a delay of 66.6 ns and a sinusoidal frequency modulation depth of 500 Mhz.

Fig. 3
Fig. 3

Plot of the intensity versus distance at the wavelengths of two Bragg gratings written into the same fiber 10 cm apart at 1309.8 and 1310 nm.

Fig. 4
Fig. 4

Plot of reflection intensity as a function of wavelength at the location of each Bragg grating.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ I = I 1 I 2 cos 2 π mft + γ   cos 2 π ft × cos 2 π mf t - d + γ   cos 2 π f t - d ,
Δ I = I 1 I 2   f   0 1 f cos 2 π mft + γ   cos 2 π ft × cos 2 π mf t - d + γ   cos 2 π f t - d dt .
Δ I = I 1 I 2 2 cos 2 π mdf ×   i = 0 2 γ sin π df 2 i 2     4     6     2 i 2 - 1 i .
c 4 nf low < L < c 2 nf low ,
τ = 2 nL c ,
f mod = c 2 nL ,
Δ d ϕ = c 2 p f mod n 0.01   m ,
Δ f opt = c 2 Δ d res n 1   GHz .

Metrics