Abstract

We describe a new technique that incorporates polarization modulation into near-field scanning optical microscopy (NSOM) for nanometer scale polarimetry studies. By using this technique, we can quantitatively measure the optical anisotropy of materials with both the high sensitivity of dynamic polarimetry and the high spatial resolution of NSOM. The magnitude and relative orientation of linear birefringence or linear dichroism are obtained simultaneously. To demonstrate the sensitivity and resolution of the microscope, we map out stress-induced birefringence associated with submicrometer defects at the fusion boundaries of SrTiO3 bicrystals. Features as small as 150 nm were imaged with a retardance sensitivity of ∼3 × 10-3 rad.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Frocht, Photoelasticity (Wiley, New York, 1941), Vol. 1, pp. 129–175.
  2. V. K. Gupta, J. A. Kornfield, A. Ferencz, G. Wegner, “Controlling molecular order in ‘Hairy Rod’ Langmuir–Blodgett films: a polarization modulation microscopy study,” Science 265, 940–942 (1994).
    [CrossRef] [PubMed]
  3. C.-Z. Ge, C.-C. Hsu, N.-B. Ming, “A study of dislocations generated by inclusions in gadolinium gallium garnet crystals by birefringence topography,” J. Cryst. Growth 142, 133–139 (1994);K. Maiwa, K. Tsukamoto, I. Sunagawa, C.-Z. Ge, N.-B. Ming, “Observation of screw and mixed dislocations in barium nitrate crystals by means of birefringence and x-ray topography,” J. Cryst. Growth 98, 590–594 (1989).
    [CrossRef]
  4. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  5. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
    [CrossRef] [PubMed]
  6. E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [CrossRef] [PubMed]
  7. E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
    [CrossRef] [PubMed]
  8. G. A. Valaskovic, M. Holton, G. H. Morrison, “Image contrast of dielectric specimens in transmission mode near-field scanning optical microscopy: imaging properties and tip artefacts,” J. Microsc. 179, 29–54 (1995).
    [CrossRef]
  9. J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996).
    [CrossRef] [PubMed]
  10. E. B. McDaniel, J. W. P. Hsu, “Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals,” J. Appl. Phys. 80, 1085–1093 (1996).
    [CrossRef]
  11. M. Vaez-Iravani, R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63, 138–140 (1993).
    [CrossRef]
  12. V. K. Gupta, J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65, 2823–2828 (1994).
    [CrossRef]
  13. R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989).
    [CrossRef]
  14. S. Y. Lu, R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994).
    [CrossRef]
  15. Hinds Instruments, Inc., Hillsboro, Ore.
  16. K. W. Hipps, G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979);S. N. Jasperson, S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
    [CrossRef]
  17. T. C. Oakberg, Linear Birefringence and Optical Rotation, Application Note (Hinds Instruments, Inc., Hillsboro, Ore., 1993).
  18. T. C. Oakberg, “Modulated interference effects: use of photoelastic modulators with lasers,” Opt. Eng. 34, 1545–1550 (1995).
    [CrossRef]
  19. The extinction ratio measured in the far field depends on the N.A. of the objective used; some of these tip have extinction ratios of >1000:1 when measured with a N.A. = 0.28 or a N.A. = 0.55 objective lens.
  20. J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995);M. Lee, E. B. McDaniel, J. W. P. Hsu, “An impedance based noncontact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
    [CrossRef]
  21. ThorLabs, Inc., Newton, N.J., part FPC030.
  22. Thorlabs Fiber Polarization Controller Product Description, 0482-D01 Rev. B (ThorLabs, Inc., Newton, N.J., 1994).
  23. Nikko Hitech Inc., San Jose, Calif.
  24. E. B. McDaniel, J. W. P. Hsu, “Measurement of strain associated with defects in SrTiO3 bicrystals using near-field scanning optical microscopy,” Mater. Res. Soc. Proc.474, pp. 91–98 (Materials Research Society, Pittsburgh, Pa., 1997); J. W. P. Hsu, E. B. McDaniel, R. A. Rao, C. B. Eom, “Microstructural defects in SrTiO3 bicrystals and their influence on YBa2Cu3O7 film growth and junction performance,” Mater. Res. Soc. Proc.474, pp. 131–136 (Materials Research Society, Pittsburgh, Pa., 1997).
  25. C. Traeholt, J. G. Wen, H. W. Zandbergen, Y. Shen, J. W. M. Hilgenkamp, “TEM investigation of YBa2Cu3O7 thin films on SrTiO3 bicrystals,” Phys. C 230, 425–434 (1994);J. W. Seo, B. Kabius, U. Dähne, A. Scholen, K. Urban, “TEM investigation of grain boundaries in YBa2Cu3O7 thin films grown on SrTiO3 bicrystal substrates,” Phys. C 245, 25–35 (1994).
    [CrossRef]
  26. E. B. McDaniel, J. W. P. Hsu, “Anomalous index contrast due to point source illumination in scanning optical microscopy,” J. Appl. Phys. 81, 2488–2491 (1997).
    [CrossRef]
  27. E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997).
    [CrossRef]
  28. J. F. Nye, “Natural and artificial double refraction: second-order effects,” in Physical Properties of Crystals (Clarendon, Oxford, UK, 1985), Chap. 13, pp. 243–254.
  29. F. Gervais, “Strontium titanate,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), p. 1039.
  30. J. Reintjes, M. B. Schulz, “Photoelastic constants of selected ultrasonic delay-line crystals,” J. Appl. Phys. 39, 5254–5258 (1968).
    [CrossRef]

1997 (2)

E. B. McDaniel, J. W. P. Hsu, “Anomalous index contrast due to point source illumination in scanning optical microscopy,” J. Appl. Phys. 81, 2488–2491 (1997).
[CrossRef]

E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997).
[CrossRef]

1996 (2)

J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996).
[CrossRef] [PubMed]

E. B. McDaniel, J. W. P. Hsu, “Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals,” J. Appl. Phys. 80, 1085–1093 (1996).
[CrossRef]

1995 (3)

G. A. Valaskovic, M. Holton, G. H. Morrison, “Image contrast of dielectric specimens in transmission mode near-field scanning optical microscopy: imaging properties and tip artefacts,” J. Microsc. 179, 29–54 (1995).
[CrossRef]

T. C. Oakberg, “Modulated interference effects: use of photoelastic modulators with lasers,” Opt. Eng. 34, 1545–1550 (1995).
[CrossRef]

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995);M. Lee, E. B. McDaniel, J. W. P. Hsu, “An impedance based noncontact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
[CrossRef]

1994 (5)

C. Traeholt, J. G. Wen, H. W. Zandbergen, Y. Shen, J. W. M. Hilgenkamp, “TEM investigation of YBa2Cu3O7 thin films on SrTiO3 bicrystals,” Phys. C 230, 425–434 (1994);J. W. Seo, B. Kabius, U. Dähne, A. Scholen, K. Urban, “TEM investigation of grain boundaries in YBa2Cu3O7 thin films grown on SrTiO3 bicrystal substrates,” Phys. C 245, 25–35 (1994).
[CrossRef]

V. K. Gupta, J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65, 2823–2828 (1994).
[CrossRef]

S. Y. Lu, R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994).
[CrossRef]

V. K. Gupta, J. A. Kornfield, A. Ferencz, G. Wegner, “Controlling molecular order in ‘Hairy Rod’ Langmuir–Blodgett films: a polarization modulation microscopy study,” Science 265, 940–942 (1994).
[CrossRef] [PubMed]

C.-Z. Ge, C.-C. Hsu, N.-B. Ming, “A study of dislocations generated by inclusions in gadolinium gallium garnet crystals by birefringence topography,” J. Cryst. Growth 142, 133–139 (1994);K. Maiwa, K. Tsukamoto, I. Sunagawa, C.-Z. Ge, N.-B. Ming, “Observation of screw and mixed dislocations in barium nitrate crystals by means of birefringence and x-ray topography,” J. Cryst. Growth 98, 590–594 (1989).
[CrossRef]

1993 (2)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

M. Vaez-Iravani, R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63, 138–140 (1993).
[CrossRef]

1992 (2)

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

1989 (1)

R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989).
[CrossRef]

1979 (1)

K. W. Hipps, G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979);S. N. Jasperson, S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

1968 (1)

J. Reintjes, M. B. Schulz, “Photoelastic constants of selected ultrasonic delay-line crystals,” J. Appl. Phys. 39, 5254–5258 (1968).
[CrossRef]

Awschalom, D. D.

J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Chichester, R. J.

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

Chipman, R. A.

S. Y. Lu, R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994).
[CrossRef]

R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989).
[CrossRef]

Cohen, A.

J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996).
[CrossRef] [PubMed]

Crosby, G. A.

K. W. Hipps, G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979);S. N. Jasperson, S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

Deaver, B. S.

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995);M. Lee, E. B. McDaniel, J. W. P. Hsu, “An impedance based noncontact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
[CrossRef]

Eom, C. B.

E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997).
[CrossRef]

Ferencz, A.

V. K. Gupta, J. A. Kornfield, A. Ferencz, G. Wegner, “Controlling molecular order in ‘Hairy Rod’ Langmuir–Blodgett films: a polarization modulation microscopy study,” Science 265, 940–942 (1994).
[CrossRef] [PubMed]

Frocht, M. M.

M. M. Frocht, Photoelasticity (Wiley, New York, 1941), Vol. 1, pp. 129–175.

Garcia, R.

J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996).
[CrossRef] [PubMed]

Gausepohl, S. C.

E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997).
[CrossRef]

Ge, C.-Z.

C.-Z. Ge, C.-C. Hsu, N.-B. Ming, “A study of dislocations generated by inclusions in gadolinium gallium garnet crystals by birefringence topography,” J. Cryst. Growth 142, 133–139 (1994);K. Maiwa, K. Tsukamoto, I. Sunagawa, C.-Z. Ge, N.-B. Ming, “Observation of screw and mixed dislocations in barium nitrate crystals by means of birefringence and x-ray topography,” J. Cryst. Growth 98, 590–594 (1989).
[CrossRef]

Gervais, F.

F. Gervais, “Strontium titanate,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), p. 1039.

Gupta, V. K.

V. K. Gupta, J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65, 2823–2828 (1994).
[CrossRef]

V. K. Gupta, J. A. Kornfield, A. Ferencz, G. Wegner, “Controlling molecular order in ‘Hairy Rod’ Langmuir–Blodgett films: a polarization modulation microscopy study,” Science 265, 940–942 (1994).
[CrossRef] [PubMed]

Harris, T. D.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Hilgenkamp, J. W. M.

C. Traeholt, J. G. Wen, H. W. Zandbergen, Y. Shen, J. W. M. Hilgenkamp, “TEM investigation of YBa2Cu3O7 thin films on SrTiO3 bicrystals,” Phys. C 230, 425–434 (1994);J. W. Seo, B. Kabius, U. Dähne, A. Scholen, K. Urban, “TEM investigation of grain boundaries in YBa2Cu3O7 thin films grown on SrTiO3 bicrystal substrates,” Phys. C 245, 25–35 (1994).
[CrossRef]

Hipps, K. W.

K. W. Hipps, G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979);S. N. Jasperson, S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

Holton, M.

G. A. Valaskovic, M. Holton, G. H. Morrison, “Image contrast of dielectric specimens in transmission mode near-field scanning optical microscopy: imaging properties and tip artefacts,” J. Microsc. 179, 29–54 (1995).
[CrossRef]

Hsu, C.-C.

C.-Z. Ge, C.-C. Hsu, N.-B. Ming, “A study of dislocations generated by inclusions in gadolinium gallium garnet crystals by birefringence topography,” J. Cryst. Growth 142, 133–139 (1994);K. Maiwa, K. Tsukamoto, I. Sunagawa, C.-Z. Ge, N.-B. Ming, “Observation of screw and mixed dislocations in barium nitrate crystals by means of birefringence and x-ray topography,” J. Cryst. Growth 98, 590–594 (1989).
[CrossRef]

Hsu, J. W. P.

E. B. McDaniel, J. W. P. Hsu, “Anomalous index contrast due to point source illumination in scanning optical microscopy,” J. Appl. Phys. 81, 2488–2491 (1997).
[CrossRef]

E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, “Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals,” J. Appl. Phys. 80, 1085–1093 (1996).
[CrossRef]

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995);M. Lee, E. B. McDaniel, J. W. P. Hsu, “An impedance based noncontact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
[CrossRef]

Kikkawa, J. M.

J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996).
[CrossRef] [PubMed]

Kornfield, J. A.

V. K. Gupta, J. A. Kornfield, A. Ferencz, G. Wegner, “Controlling molecular order in ‘Hairy Rod’ Langmuir–Blodgett films: a polarization modulation microscopy study,” Science 265, 940–942 (1994).
[CrossRef] [PubMed]

V. K. Gupta, J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65, 2823–2828 (1994).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Lee, M.

E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997).
[CrossRef]

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995);M. Lee, E. B. McDaniel, J. W. P. Hsu, “An impedance based noncontact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
[CrossRef]

Levy, J.

J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996).
[CrossRef] [PubMed]

Li, C.-T.

E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997).
[CrossRef]

Lu, S. Y.

McDaniel, E. B.

E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, “Anomalous index contrast due to point source illumination in scanning optical microscopy,” J. Appl. Phys. 81, 2488–2491 (1997).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, “Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals,” J. Appl. Phys. 80, 1085–1093 (1996).
[CrossRef]

Ming, N.-B.

C.-Z. Ge, C.-C. Hsu, N.-B. Ming, “A study of dislocations generated by inclusions in gadolinium gallium garnet crystals by birefringence topography,” J. Cryst. Growth 142, 133–139 (1994);K. Maiwa, K. Tsukamoto, I. Sunagawa, C.-Z. Ge, N.-B. Ming, “Observation of screw and mixed dislocations in barium nitrate crystals by means of birefringence and x-ray topography,” J. Cryst. Growth 98, 590–594 (1989).
[CrossRef]

Morrison, G. H.

G. A. Valaskovic, M. Holton, G. H. Morrison, “Image contrast of dielectric specimens in transmission mode near-field scanning optical microscopy: imaging properties and tip artefacts,” J. Microsc. 179, 29–54 (1995).
[CrossRef]

Nikitin, V.

J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996).
[CrossRef] [PubMed]

Nye, J. F.

J. F. Nye, “Natural and artificial double refraction: second-order effects,” in Physical Properties of Crystals (Clarendon, Oxford, UK, 1985), Chap. 13, pp. 243–254.

Oakberg, T. C.

T. C. Oakberg, “Modulated interference effects: use of photoelastic modulators with lasers,” Opt. Eng. 34, 1545–1550 (1995).
[CrossRef]

T. C. Oakberg, Linear Birefringence and Optical Rotation, Application Note (Hinds Instruments, Inc., Hillsboro, Ore., 1993).

Rao, R. A.

E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997).
[CrossRef]

Reintjes, J.

J. Reintjes, M. B. Schulz, “Photoelastic constants of selected ultrasonic delay-line crystals,” J. Appl. Phys. 39, 5254–5258 (1968).
[CrossRef]

Samarth, N.

J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996).
[CrossRef] [PubMed]

Schulz, M. B.

J. Reintjes, M. B. Schulz, “Photoelastic constants of selected ultrasonic delay-line crystals,” J. Appl. Phys. 39, 5254–5258 (1968).
[CrossRef]

Shen, Y.

C. Traeholt, J. G. Wen, H. W. Zandbergen, Y. Shen, J. W. M. Hilgenkamp, “TEM investigation of YBa2Cu3O7 thin films on SrTiO3 bicrystals,” Phys. C 230, 425–434 (1994);J. W. Seo, B. Kabius, U. Dähne, A. Scholen, K. Urban, “TEM investigation of grain boundaries in YBa2Cu3O7 thin films grown on SrTiO3 bicrystal substrates,” Phys. C 245, 25–35 (1994).
[CrossRef]

Toledo-Crow, R.

M. Vaez-Iravani, R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63, 138–140 (1993).
[CrossRef]

Traeholt, C.

C. Traeholt, J. G. Wen, H. W. Zandbergen, Y. Shen, J. W. M. Hilgenkamp, “TEM investigation of YBa2Cu3O7 thin films on SrTiO3 bicrystals,” Phys. C 230, 425–434 (1994);J. W. Seo, B. Kabius, U. Dähne, A. Scholen, K. Urban, “TEM investigation of grain boundaries in YBa2Cu3O7 thin films grown on SrTiO3 bicrystal substrates,” Phys. C 245, 25–35 (1994).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Vaez-Iravani, M.

M. Vaez-Iravani, R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63, 138–140 (1993).
[CrossRef]

Valaskovic, G. A.

G. A. Valaskovic, M. Holton, G. H. Morrison, “Image contrast of dielectric specimens in transmission mode near-field scanning optical microscopy: imaging properties and tip artefacts,” J. Microsc. 179, 29–54 (1995).
[CrossRef]

Wegner, G.

V. K. Gupta, J. A. Kornfield, A. Ferencz, G. Wegner, “Controlling molecular order in ‘Hairy Rod’ Langmuir–Blodgett films: a polarization modulation microscopy study,” Science 265, 940–942 (1994).
[CrossRef] [PubMed]

Weiner, J. S.

E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Wen, J. G.

C. Traeholt, J. G. Wen, H. W. Zandbergen, Y. Shen, J. W. M. Hilgenkamp, “TEM investigation of YBa2Cu3O7 thin films on SrTiO3 bicrystals,” Phys. C 230, 425–434 (1994);J. W. Seo, B. Kabius, U. Dähne, A. Scholen, K. Urban, “TEM investigation of grain boundaries in YBa2Cu3O7 thin films grown on SrTiO3 bicrystal substrates,” Phys. C 245, 25–35 (1994).
[CrossRef]

Wolfe, R.

Zandbergen, H. W.

C. Traeholt, J. G. Wen, H. W. Zandbergen, Y. Shen, J. W. M. Hilgenkamp, “TEM investigation of YBa2Cu3O7 thin films on SrTiO3 bicrystals,” Phys. C 230, 425–434 (1994);J. W. Seo, B. Kabius, U. Dähne, A. Scholen, K. Urban, “TEM investigation of grain boundaries in YBa2Cu3O7 thin films grown on SrTiO3 bicrystal substrates,” Phys. C 245, 25–35 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Vaez-Iravani, R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63, 138–140 (1993).
[CrossRef]

E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997).
[CrossRef]

J. Appl. Phys. (3)

J. Reintjes, M. B. Schulz, “Photoelastic constants of selected ultrasonic delay-line crystals,” J. Appl. Phys. 39, 5254–5258 (1968).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, “Anomalous index contrast due to point source illumination in scanning optical microscopy,” J. Appl. Phys. 81, 2488–2491 (1997).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, “Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals,” J. Appl. Phys. 80, 1085–1093 (1996).
[CrossRef]

J. Cryst. Growth (1)

C.-Z. Ge, C.-C. Hsu, N.-B. Ming, “A study of dislocations generated by inclusions in gadolinium gallium garnet crystals by birefringence topography,” J. Cryst. Growth 142, 133–139 (1994);K. Maiwa, K. Tsukamoto, I. Sunagawa, C.-Z. Ge, N.-B. Ming, “Observation of screw and mixed dislocations in barium nitrate crystals by means of birefringence and x-ray topography,” J. Cryst. Growth 98, 590–594 (1989).
[CrossRef]

J. Microsc. (1)

G. A. Valaskovic, M. Holton, G. H. Morrison, “Image contrast of dielectric specimens in transmission mode near-field scanning optical microscopy: imaging properties and tip artefacts,” J. Microsc. 179, 29–54 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

K. W. Hipps, G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979);S. N. Jasperson, S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969).
[CrossRef]

Opt. Eng. (2)

R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989).
[CrossRef]

T. C. Oakberg, “Modulated interference effects: use of photoelastic modulators with lasers,” Opt. Eng. 34, 1545–1550 (1995).
[CrossRef]

Phys. C (1)

C. Traeholt, J. G. Wen, H. W. Zandbergen, Y. Shen, J. W. M. Hilgenkamp, “TEM investigation of YBa2Cu3O7 thin films on SrTiO3 bicrystals,” Phys. C 230, 425–434 (1994);J. W. Seo, B. Kabius, U. Dähne, A. Scholen, K. Urban, “TEM investigation of grain boundaries in YBa2Cu3O7 thin films grown on SrTiO3 bicrystal substrates,” Phys. C 245, 25–35 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

V. K. Gupta, J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65, 2823–2828 (1994).
[CrossRef]

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995);M. Lee, E. B. McDaniel, J. W. P. Hsu, “An impedance based noncontact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
[CrossRef]

Science (4)

E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

V. K. Gupta, J. A. Kornfield, A. Ferencz, G. Wegner, “Controlling molecular order in ‘Hairy Rod’ Langmuir–Blodgett films: a polarization modulation microscopy study,” Science 265, 940–942 (1994).
[CrossRef] [PubMed]

Other (10)

M. M. Frocht, Photoelasticity (Wiley, New York, 1941), Vol. 1, pp. 129–175.

T. C. Oakberg, Linear Birefringence and Optical Rotation, Application Note (Hinds Instruments, Inc., Hillsboro, Ore., 1993).

Hinds Instruments, Inc., Hillsboro, Ore.

ThorLabs, Inc., Newton, N.J., part FPC030.

Thorlabs Fiber Polarization Controller Product Description, 0482-D01 Rev. B (ThorLabs, Inc., Newton, N.J., 1994).

Nikko Hitech Inc., San Jose, Calif.

E. B. McDaniel, J. W. P. Hsu, “Measurement of strain associated with defects in SrTiO3 bicrystals using near-field scanning optical microscopy,” Mater. Res. Soc. Proc.474, pp. 91–98 (Materials Research Society, Pittsburgh, Pa., 1997); J. W. P. Hsu, E. B. McDaniel, R. A. Rao, C. B. Eom, “Microstructural defects in SrTiO3 bicrystals and their influence on YBa2Cu3O7 film growth and junction performance,” Mater. Res. Soc. Proc.474, pp. 131–136 (Materials Research Society, Pittsburgh, Pa., 1997).

The extinction ratio measured in the far field depends on the N.A. of the objective used; some of these tip have extinction ratios of >1000:1 when measured with a N.A. = 0.28 or a N.A. = 0.55 objective lens.

J. F. Nye, “Natural and artificial double refraction: second-order effects,” in Physical Properties of Crystals (Clarendon, Oxford, UK, 1985), Chap. 13, pp. 243–254.

F. Gervais, “Strontium titanate,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), p. 1039.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scanning electron microscope micrographs of two tapered optical fiber tips made from one pull, i.e., twins: (a) side view of one of the tips uncoated and (b) head-on view of its twin coated with aluminum. The subwavelength aperture is the dark circle on Fig. 1(b). The flat end of the uncoated tip and the aperture of the coated tip are marked in Figs. 1(a) and 1(b), respectively. Both measure 61 ± 3 nm, indicating that the aluminum coating is not covering the end of the glass fiber face.

Fig. 2
Fig. 2

Schematic of the polarization modulation NSOM experimental setup for measuring linear birefringence (with circular analyzer) or linear dichroism (without circular analyzer).

Fig. 3
Fig. 3

Topography, transmission, and birefringence images of the same defect on the fusion boundary of a 24° SrTiO3 bicrystal. (a) Topographic image with 25-Å full gray scale. (b) Transmission NSOM image taken simultaneously with the topographic image. The defect has a maximum optical contrast of 11%. (c) and (d) Simultaneously acquired 1f/dc and 2f/dc raw data, respectively, with a 0.06-rad gray scale. (e) Retardance magnitude ϕ image calculated from Figs. 3(c) and 3(d), with a 0.05-rad gray scale. The defect has a maximum retardance of 0.043 rad. (f) Relative birefringence orientation θrelative, also calculated from Figs. 3(c) and 3(d), with a 0 to π gray scale. The abrupt dark to light changes can indicate wraparound from 0 to π and not necessarily extreme changes in orientation.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I=I012+12 J0δ0sin ϕ sin 2θ+-sin ϕ cos 2θJ1δ0sin ωt +J3δ0sin 3ωt+J5δ0sin 5ωt++sin ϕ sin 2θJ2δ0cos 2ωt+J4δ0cos 4ωt +J6δ0cos 6ωt+,
1f/dcrms=-2J1δ0sinϕcos2θ,
2f/dcrms=2J2δ0sinϕsin2θ.
1f/dcrms=-2J1δ0p-q/p+qsin2θ,
2f/dcrms=-2J2δ0p-q/p+qcos2θ,
1f/dcrms=-2J1δ0sinϕcos2θ+r,
2f/dcrms=2J2δ0sinϕsin2θ+r,
1f/dcrms=-2J1δ0p-q/p+qsin2θ+r,
2f/dcrms=-2J2δ0p-q/p+qcos2θ+r,
1f/dcrms=-2J1δ0sinϕcosϕbulkcos2θ+r+sinϕbulkcos2θbulk+r-sinϕbulk×1-cosϕcos2θ+rcos2θ-2θbulk,
2f/dcrms=2J2δ0sinϕcosϕbulksin2θ+r+sinϕbulkcos2θbulk+r-sinϕbulk1-cosϕsin2θ+rcos2θ-2θbulk,
1f/dcrms=-2J1δ0sinϕcosϕbulkcos2θ+r+offset1fspatially invariant,
2f/dcrms=2J2δ0sinϕcosϕbulksin2θ+r+offset2fspatially invariant.
ϕ=sin-11f/dc-offset1frms22J1δ02+2f/dc-offset2frms22J2δ021/2,
θrelative=12tan-12f/dc-offset2frmsJ1δ0-1f/dc-offset1frmsJ2δ0.

Metrics