Abstract

A combined experimental and computational approach utilizing tunable CO2 lasers and chemometric analysis was employed to detect chemicals and their concentrations in the field under controlled release conditions. We collected absorption spectra for four organic gases in the laboratory by lasing 40 lines of the laser in the 9.3–10.8-µm range. The ability to predict properly the chemicals and their respective concentrations depends on the nature of the target, the atmospheric conditions, and the round-trip distance. In 39 of the 45 field experiments, the identities of the released chemicals were identified correctly without predictions of false positives or false negatives.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Peterson, D. H. Stedman, “Find and fix the polluters,” Chemtech (American Chemical Society, Washington, D.C., 1992), pp. 47–53; J. Air Waste Manage. 43, 978–988 (1993).
  2. E. Audige, D. Thomas, J. P. Pommereau, F. Goutail, “The SANOA instrument: an integrated DOAS system using a diode array detector,” Optical Remote Sensing for Environmental and Process Monitoring, Air and Waste Management Association Conference VIP-55 (Air and Waste Management Association, Pittsburgh, Pa., 1995), pp. 67–77.
  3. J. W. Early, C. S. Lester, C. R. Quick, J. J. Tiee, T. Shimada, N. J. Cockroft, “Continuously tunable, narrow-linewidth, Q-switched Cr:LiSAF laser for lidar applications,” OSA Proceedings on Advanced Solid State Lasers, Vol. 24, B. H. T. Chai, S. A. Payne, eds. (Optical Society of America, Washington, D.C., 1995), pp. 9–12.
  4. W. Peng, K. W. D. Ledingham, A. Marshall, R. P. Singhal, M. Campbell, R. Zheng, “A laser based procedure for the detection of atmospheric NOx gases,” AIP Conf. Proc. 329, 523–526 (1994).
    [CrossRef]
  5. W. B. Grant, “The Mobile Atmospheric Pollutant Mapping (MAPM) system: a coherent CO2 DIAL system,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. SPIE1062, 172–190 (1989).
    [CrossRef]
  6. C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J-P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
    [CrossRef] [PubMed]
  7. R. Haus, K. Schafer, D. Wehner, H. Bittner, H. Mosebach, “Remote sensing of air pollution by mobile Fourier-transform spectroscopy: modeling and first results of measurements,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 67–75.
  8. R. J. Kricks, D. E. Pescatore, R. Lute, T. H. Prichett, “Preparation and use of synthetic mixtures in assessing performance of project-specific analysis methods software for open-path FTIR spectrophotometers,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air, and Waste Management Association, Pittsburgh, Pa., 1992), pp. 93–104.
  9. G. M. Russwurm, “Quality assurance and the effects of spectral shifts and interfering species in FTIR analysis,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 105–111.
  10. J. Kert, “Remote sensing of on-road vehicle emissions by an FTIR,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 325–330.
  11. C. L. McCauley, M. J. Czerniawski, R. H. Kagann, O. A. Simpson, “Development of a user-friendly intelligent spectroscopic computer system, a case study: design of a continuous monitoring computer system,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 456–463.
  12. R. E. Warren, “Optimum detection of multiple vapor materials using frequency agile lidar,” Appl. Opt. 35, 4180–4193 (1996).
    [CrossRef] [PubMed]
  13. A. S. Zachor, “Spectral pattern recognition in IR remote sensing,” Appl. Opt. 22, 2699–2703 (1983).
    [CrossRef] [PubMed]
  14. E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
    [CrossRef] [PubMed]
  15. E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 micron) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
    [CrossRef]
  16. D. R. Morgan, “Spectral absorption pattern detection and estimation. II. System applications and design procedures,” Appl. Spectrosc. 31, (5), 415–423 (1977).
    [CrossRef]
  17. J. Leonelli, P. L. Holland, J. E. van der Laan, “Multiwavelength and triple CO2 lidars for trace gas detection,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. SPIE1062, 203–216 (1989).
    [CrossRef]
  18. L. B. Whitbourn, R. N. Phillips, G. James, M. T. O’Brien, “An airborne multiline CO2 laser system for remote sensing of minerals,” J. Mod. Opt. 37, 1865–1871 (1990).
    [CrossRef]
  19. E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 280–319 (1990).
    [CrossRef]
  20. F. R. Faxvog, H. W. Mocker, “Rapidly tunable CO2 TEA laser,” Appl. Opt. 21, 3986–3987 (1982).
    [CrossRef] [PubMed]
  21. L. Carr, L. Fletcher, M. Crittenden, C. Carlisle, S. Gotoff, F. Reyes, F. D’Amico, “Frequency-agile CO2 DIAL for environmental monitoring,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 282–294 (1993).
    [CrossRef]
  22. A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
    [CrossRef] [PubMed]
  23. I. S. McDermid, D. A. Haner, M. M. Kleiman, T. S. Walsh, M. L. White, “Differential absorption lidar systems for tropospheric and stratospheric ozone measurements,” Opt. Eng. 30 (1), 22–30 (1991).
    [CrossRef]
  24. R. M. Measures, Laser Remote Chemical Analysis, Vol. 94 in Chemical Analysis Monograph Series (Wiley, New York, 1988).
  25. W. B. Grant, “Effect of differential spectral reflectance on DIAL measurements using topographic targets,” Appl. Opt. 21, 2390–2394 (1982).
    [CrossRef] [PubMed]
  26. M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential reflectance of natural and man-made materials at CO2 laser wavelengths,” Appl. Opt. 21, 2386–2389 (1982).
    [CrossRef] [PubMed]
  27. W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential absorption lidar signal averaging,” Appl. Opt. 27, 1934–1938 (1988).
    [CrossRef] [PubMed]
  28. E. V. Thomas, D. M. Haaland, “Comparison of multivariate calibration methods for quantitative spectral analysis,” Anal. Chem. 62, 1091–1099 (1990).
    [CrossRef]
  29. D. M. Haaland, E. V. Thomas, “Partial least squares methods for spectral analysis: relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
    [CrossRef]
  30. E. V. Browell, “Differential absorption lidar sensing of ozone,” Proc. IEEE 77, 419–432 (1989).
    [CrossRef]
  31. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
    [CrossRef] [PubMed]
  32. D. C. Montgomery, E. A. Peck, Introduction to Linear Regression Analysis (Wiley Interscience, New York, 1992), pp. 129–135.
  33. S. Weisberg, Applied Linear Regression, 2nd ed. (Wiley, New York, 1985), pp. 33–45.
  34. D. A. Skoog, D. M. West, Principles of Instrumental Analysis, 2nd ed. (Saunders, Philadelphia, Pa., 1980), pp. 738–743.
  35. J. S. Seinfeld, Atmospheric Chemistry and Physics of Air Pollution (Wiley Interscience, New York, 1986), Chap. 14.
  36. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements,” Appl. Opt. 21, 3377–3383 (1982).
    [CrossRef] [PubMed]
  37. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985).
    [CrossRef] [PubMed]
  38. N. Menyuk, D. K. Killinger, “Assessment of relative error sources in IR DIAL measurement accuracy,” Appl. Opt. 22, 2690–2698 (1983).
    [CrossRef] [PubMed]
  39. W. B. Grant, “Water vapor absorption coefficients in the 8–13 micrometer spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
    [CrossRef] [PubMed]

1996 (1)

1995 (1)

1994 (1)

W. Peng, K. W. D. Ledingham, A. Marshall, R. P. Singhal, M. Campbell, R. Zheng, “A laser based procedure for the detection of atmospheric NOx gases,” AIP Conf. Proc. 329, 523–526 (1994).
[CrossRef]

1992 (1)

1991 (1)

I. S. McDermid, D. A. Haner, M. M. Kleiman, T. S. Walsh, M. L. White, “Differential absorption lidar systems for tropospheric and stratospheric ozone measurements,” Opt. Eng. 30 (1), 22–30 (1991).
[CrossRef]

1990 (4)

E. V. Thomas, D. M. Haaland, “Comparison of multivariate calibration methods for quantitative spectral analysis,” Anal. Chem. 62, 1091–1099 (1990).
[CrossRef]

L. B. Whitbourn, R. N. Phillips, G. James, M. T. O’Brien, “An airborne multiline CO2 laser system for remote sensing of minerals,” J. Mod. Opt. 37, 1865–1871 (1990).
[CrossRef]

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 280–319 (1990).
[CrossRef]

W. B. Grant, “Water vapor absorption coefficients in the 8–13 micrometer spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
[CrossRef] [PubMed]

1989 (1)

E. V. Browell, “Differential absorption lidar sensing of ozone,” Proc. IEEE 77, 419–432 (1989).
[CrossRef]

1988 (2)

D. M. Haaland, E. V. Thomas, “Partial least squares methods for spectral analysis: relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential absorption lidar signal averaging,” Appl. Opt. 27, 1934–1938 (1988).
[CrossRef] [PubMed]

1987 (1)

1985 (1)

1983 (2)

1982 (4)

1978 (1)

1977 (1)

1976 (1)

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 micron) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Adam, P.

Audige, E.

E. Audige, D. Thomas, J. P. Pommereau, F. Goutail, “The SANOA instrument: an integrated DOAS system using a diode array detector,” Optical Remote Sensing for Environmental and Process Monitoring, Air and Waste Management Association Conference VIP-55 (Air and Waste Management Association, Pittsburgh, Pa., 1995), pp. 67–77.

Ben-David, A.

Bittner, H.

R. Haus, K. Schafer, D. Wehner, H. Bittner, H. Mosebach, “Remote sensing of air pollution by mobile Fourier-transform spectroscopy: modeling and first results of measurements,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 67–75.

Bogan, J. R.

Brothers, A. M.

Browell, E. V.

E. V. Browell, “Differential absorption lidar sensing of ozone,” Proc. IEEE 77, 419–432 (1989).
[CrossRef]

Campbell, M.

W. Peng, K. W. D. Ledingham, A. Marshall, R. P. Singhal, M. Campbell, R. Zheng, “A laser based procedure for the detection of atmospheric NOx gases,” AIP Conf. Proc. 329, 523–526 (1994).
[CrossRef]

Carlisle, C.

L. Carr, L. Fletcher, M. Crittenden, C. Carlisle, S. Gotoff, F. Reyes, F. D’Amico, “Frequency-agile CO2 DIAL for environmental monitoring,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 282–294 (1993).
[CrossRef]

Carlisle, C. B.

Carr, L.

L. Carr, L. Fletcher, M. Crittenden, C. Carlisle, S. Gotoff, F. Reyes, F. D’Amico, “Frequency-agile CO2 DIAL for environmental monitoring,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 282–294 (1993).
[CrossRef]

Carr, L. W.

Chiaroni, J-P.

Cockroft, N. J.

J. W. Early, C. S. Lester, C. R. Quick, J. J. Tiee, T. Shimada, N. J. Cockroft, “Continuously tunable, narrow-linewidth, Q-switched Cr:LiSAF laser for lidar applications,” OSA Proceedings on Advanced Solid State Lasers, Vol. 24, B. H. T. Chai, S. A. Payne, eds. (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Crittenden, M.

L. Carr, L. Fletcher, M. Crittenden, C. Carlisle, S. Gotoff, F. Reyes, F. D’Amico, “Frequency-agile CO2 DIAL for environmental monitoring,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 282–294 (1993).
[CrossRef]

Czerniawski, M. J.

C. L. McCauley, M. J. Czerniawski, R. H. Kagann, O. A. Simpson, “Development of a user-friendly intelligent spectroscopic computer system, a case study: design of a continuous monitoring computer system,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 456–463.

D’Amico, F.

L. Carr, L. Fletcher, M. Crittenden, C. Carlisle, S. Gotoff, F. Reyes, F. D’Amico, “Frequency-agile CO2 DIAL for environmental monitoring,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 282–294 (1993).
[CrossRef]

D’Amico, F. M.

Early, J. W.

J. W. Early, C. S. Lester, C. R. Quick, J. J. Tiee, T. Shimada, N. J. Cockroft, “Continuously tunable, narrow-linewidth, Q-switched Cr:LiSAF laser for lidar applications,” OSA Proceedings on Advanced Solid State Lasers, Vol. 24, B. H. T. Chai, S. A. Payne, eds. (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Emery, S. L.

Eng, S. T.

Faxvog, F. R.

Fletcher, L.

L. Carr, L. Fletcher, M. Crittenden, C. Carlisle, S. Gotoff, F. Reyes, F. D’Amico, “Frequency-agile CO2 DIAL for environmental monitoring,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 282–294 (1993).
[CrossRef]

Gotoff, S.

L. Carr, L. Fletcher, M. Crittenden, C. Carlisle, S. Gotoff, F. Reyes, F. D’Amico, “Frequency-agile CO2 DIAL for environmental monitoring,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 282–294 (1993).
[CrossRef]

Gotoff, S. W.

Goutail, F.

E. Audige, D. Thomas, J. P. Pommereau, F. Goutail, “The SANOA instrument: an integrated DOAS system using a diode array detector,” Optical Remote Sensing for Environmental and Process Monitoring, Air and Waste Management Association Conference VIP-55 (Air and Waste Management Association, Pittsburgh, Pa., 1995), pp. 67–77.

Grant, W. B.

Haaland, D. M.

E. V. Thomas, D. M. Haaland, “Comparison of multivariate calibration methods for quantitative spectral analysis,” Anal. Chem. 62, 1091–1099 (1990).
[CrossRef]

D. M. Haaland, E. V. Thomas, “Partial least squares methods for spectral analysis: relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Hake, R. D.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 micron) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Haner, D. A.

I. S. McDermid, D. A. Haner, M. M. Kleiman, T. S. Walsh, M. L. White, “Differential absorption lidar systems for tropospheric and stratospheric ozone measurements,” Opt. Eng. 30 (1), 22–30 (1991).
[CrossRef]

Haus, R.

R. Haus, K. Schafer, D. Wehner, H. Bittner, H. Mosebach, “Remote sensing of air pollution by mobile Fourier-transform spectroscopy: modeling and first results of measurements,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 67–75.

Hawley, J. G.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 micron) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Holland, P. L.

J. Leonelli, P. L. Holland, J. E. van der Laan, “Multiwavelength and triple CO2 lidars for trace gas detection,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. SPIE1062, 203–216 (1989).
[CrossRef]

James, G.

L. B. Whitbourn, R. N. Phillips, G. James, M. T. O’Brien, “An airborne multiline CO2 laser system for remote sensing of minerals,” J. Mod. Opt. 37, 1865–1871 (1990).
[CrossRef]

Kagann, R. H.

C. L. McCauley, M. J. Czerniawski, R. H. Kagann, O. A. Simpson, “Development of a user-friendly intelligent spectroscopic computer system, a case study: design of a continuous monitoring computer system,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 456–463.

Kert, J.

J. Kert, “Remote sensing of on-road vehicle emissions by an FTIR,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 325–330.

Killinger, D. K.

Kleiman, M. M.

I. S. McDermid, D. A. Haner, M. M. Kleiman, T. S. Walsh, M. L. White, “Differential absorption lidar systems for tropospheric and stratospheric ozone measurements,” Opt. Eng. 30 (1), 22–30 (1991).
[CrossRef]

Kricks, R. J.

R. J. Kricks, D. E. Pescatore, R. Lute, T. H. Prichett, “Preparation and use of synthetic mixtures in assessing performance of project-specific analysis methods software for open-path FTIR spectrophotometers,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air, and Waste Management Association, Pittsburgh, Pa., 1992), pp. 93–104.

Ledingham, K. W. D.

W. Peng, K. W. D. Ledingham, A. Marshall, R. P. Singhal, M. Campbell, R. Zheng, “A laser based procedure for the detection of atmospheric NOx gases,” AIP Conf. Proc. 329, 523–526 (1994).
[CrossRef]

Leonelli, J.

J. Leonelli, P. L. Holland, J. E. van der Laan, “Multiwavelength and triple CO2 lidars for trace gas detection,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. SPIE1062, 203–216 (1989).
[CrossRef]

Lester, C. S.

J. W. Early, C. S. Lester, C. R. Quick, J. J. Tiee, T. Shimada, N. J. Cockroft, “Continuously tunable, narrow-linewidth, Q-switched Cr:LiSAF laser for lidar applications,” OSA Proceedings on Advanced Solid State Lasers, Vol. 24, B. H. T. Chai, S. A. Payne, eds. (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Lundqvist, S.

Lute, R.

R. J. Kricks, D. E. Pescatore, R. Lute, T. H. Prichett, “Preparation and use of synthetic mixtures in assessing performance of project-specific analysis methods software for open-path FTIR spectrophotometers,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air, and Waste Management Association, Pittsburgh, Pa., 1992), pp. 93–104.

Margolis, J. S.

Marshall, A.

W. Peng, K. W. D. Ledingham, A. Marshall, R. P. Singhal, M. Campbell, R. Zheng, “A laser based procedure for the detection of atmospheric NOx gases,” AIP Conf. Proc. 329, 523–526 (1994).
[CrossRef]

McCauley, C. L.

C. L. McCauley, M. J. Czerniawski, R. H. Kagann, O. A. Simpson, “Development of a user-friendly intelligent spectroscopic computer system, a case study: design of a continuous monitoring computer system,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 456–463.

McDermid, I. S.

I. S. McDermid, D. A. Haner, M. M. Kleiman, T. S. Walsh, M. L. White, “Differential absorption lidar systems for tropospheric and stratospheric ozone measurements,” Opt. Eng. 30 (1), 22–30 (1991).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Chemical Analysis, Vol. 94 in Chemical Analysis Monograph Series (Wiley, New York, 1988).

Menyuk, C. R.

Menyuk, N.

Mocker, H. W.

Montgomery, D. C.

D. C. Montgomery, E. A. Peck, Introduction to Linear Regression Analysis (Wiley Interscience, New York, 1992), pp. 129–135.

Morgan, D. R.

Mosebach, H.

R. Haus, K. Schafer, D. Wehner, H. Bittner, H. Mosebach, “Remote sensing of air pollution by mobile Fourier-transform spectroscopy: modeling and first results of measurements,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 67–75.

Murray, E. R.

E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[CrossRef] [PubMed]

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 micron) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

O’Brien, M. T.

L. B. Whitbourn, R. N. Phillips, G. James, M. T. O’Brien, “An airborne multiline CO2 laser system for remote sensing of minerals,” J. Mod. Opt. 37, 1865–1871 (1990).
[CrossRef]

Peck, E. A.

D. C. Montgomery, E. A. Peck, Introduction to Linear Regression Analysis (Wiley Interscience, New York, 1992), pp. 129–135.

Peng, W.

W. Peng, K. W. D. Ledingham, A. Marshall, R. P. Singhal, M. Campbell, R. Zheng, “A laser based procedure for the detection of atmospheric NOx gases,” AIP Conf. Proc. 329, 523–526 (1994).
[CrossRef]

Persson, U.

Pescatore, D. E.

R. J. Kricks, D. E. Pescatore, R. Lute, T. H. Prichett, “Preparation and use of synthetic mixtures in assessing performance of project-specific analysis methods software for open-path FTIR spectrophotometers,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air, and Waste Management Association, Pittsburgh, Pa., 1992), pp. 93–104.

Peterson, J. E.

J. E. Peterson, D. H. Stedman, “Find and fix the polluters,” Chemtech (American Chemical Society, Washington, D.C., 1992), pp. 47–53; J. Air Waste Manage. 43, 978–988 (1993).

Phillips, R. N.

L. B. Whitbourn, R. N. Phillips, G. James, M. T. O’Brien, “An airborne multiline CO2 laser system for remote sensing of minerals,” J. Mod. Opt. 37, 1865–1871 (1990).
[CrossRef]

Pommereau, J. P.

E. Audige, D. Thomas, J. P. Pommereau, F. Goutail, “The SANOA instrument: an integrated DOAS system using a diode array detector,” Optical Remote Sensing for Environmental and Process Monitoring, Air and Waste Management Association Conference VIP-55 (Air and Waste Management Association, Pittsburgh, Pa., 1995), pp. 67–77.

Prichett, T. H.

R. J. Kricks, D. E. Pescatore, R. Lute, T. H. Prichett, “Preparation and use of synthetic mixtures in assessing performance of project-specific analysis methods software for open-path FTIR spectrophotometers,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air, and Waste Management Association, Pittsburgh, Pa., 1992), pp. 93–104.

Quick, C. R.

J. W. Early, C. S. Lester, C. R. Quick, J. J. Tiee, T. Shimada, N. J. Cockroft, “Continuously tunable, narrow-linewidth, Q-switched Cr:LiSAF laser for lidar applications,” OSA Proceedings on Advanced Solid State Lasers, Vol. 24, B. H. T. Chai, S. A. Payne, eds. (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Reyes, F.

L. Carr, L. Fletcher, M. Crittenden, C. Carlisle, S. Gotoff, F. Reyes, F. D’Amico, “Frequency-agile CO2 DIAL for environmental monitoring,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 282–294 (1993).
[CrossRef]

Russwurm, G. M.

G. M. Russwurm, “Quality assurance and the effects of spectral shifts and interfering species in FTIR analysis,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 105–111.

Schafer, K.

R. Haus, K. Schafer, D. Wehner, H. Bittner, H. Mosebach, “Remote sensing of air pollution by mobile Fourier-transform spectroscopy: modeling and first results of measurements,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 67–75.

Seinfeld, J. S.

J. S. Seinfeld, Atmospheric Chemistry and Physics of Air Pollution (Wiley Interscience, New York, 1986), Chap. 14.

Shimada, T.

J. W. Early, C. S. Lester, C. R. Quick, J. J. Tiee, T. Shimada, N. J. Cockroft, “Continuously tunable, narrow-linewidth, Q-switched Cr:LiSAF laser for lidar applications,” OSA Proceedings on Advanced Solid State Lasers, Vol. 24, B. H. T. Chai, S. A. Payne, eds. (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Shumate, M. S.

Simpson, O. A.

C. L. McCauley, M. J. Czerniawski, R. H. Kagann, O. A. Simpson, “Development of a user-friendly intelligent spectroscopic computer system, a case study: design of a continuous monitoring computer system,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 456–463.

Singhal, R. P.

W. Peng, K. W. D. Ledingham, A. Marshall, R. P. Singhal, M. Campbell, R. Zheng, “A laser based procedure for the detection of atmospheric NOx gases,” AIP Conf. Proc. 329, 523–526 (1994).
[CrossRef]

Skoog, D. A.

D. A. Skoog, D. M. West, Principles of Instrumental Analysis, 2nd ed. (Saunders, Philadelphia, Pa., 1980), pp. 738–743.

Stedman, D. H.

J. E. Peterson, D. H. Stedman, “Find and fix the polluters,” Chemtech (American Chemical Society, Washington, D.C., 1992), pp. 47–53; J. Air Waste Manage. 43, 978–988 (1993).

Thomas, D.

E. Audige, D. Thomas, J. P. Pommereau, F. Goutail, “The SANOA instrument: an integrated DOAS system using a diode array detector,” Optical Remote Sensing for Environmental and Process Monitoring, Air and Waste Management Association Conference VIP-55 (Air and Waste Management Association, Pittsburgh, Pa., 1995), pp. 67–77.

Thomas, E. V.

E. V. Thomas, D. M. Haaland, “Comparison of multivariate calibration methods for quantitative spectral analysis,” Anal. Chem. 62, 1091–1099 (1990).
[CrossRef]

D. M. Haaland, E. V. Thomas, “Partial least squares methods for spectral analysis: relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Tiee, J. J.

J. W. Early, C. S. Lester, C. R. Quick, J. J. Tiee, T. Shimada, N. J. Cockroft, “Continuously tunable, narrow-linewidth, Q-switched Cr:LiSAF laser for lidar applications,” OSA Proceedings on Advanced Solid State Lasers, Vol. 24, B. H. T. Chai, S. A. Payne, eds. (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Tratt, D. M.

van der Laan, J. E.

C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J-P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
[CrossRef] [PubMed]

E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[CrossRef] [PubMed]

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 micron) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

J. Leonelli, P. L. Holland, J. E. van der Laan, “Multiwavelength and triple CO2 lidars for trace gas detection,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. SPIE1062, 203–216 (1989).
[CrossRef]

Walsh, T. S.

I. S. McDermid, D. A. Haner, M. M. Kleiman, T. S. Walsh, M. L. White, “Differential absorption lidar systems for tropospheric and stratospheric ozone measurements,” Opt. Eng. 30 (1), 22–30 (1991).
[CrossRef]

Warren, R. E.

Wehner, D.

R. Haus, K. Schafer, D. Wehner, H. Bittner, H. Mosebach, “Remote sensing of air pollution by mobile Fourier-transform spectroscopy: modeling and first results of measurements,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 67–75.

Weisberg, S.

S. Weisberg, Applied Linear Regression, 2nd ed. (Wiley, New York, 1985), pp. 33–45.

West, D. M.

D. A. Skoog, D. M. West, Principles of Instrumental Analysis, 2nd ed. (Saunders, Philadelphia, Pa., 1980), pp. 738–743.

Whitbourn, L. B.

L. B. Whitbourn, R. N. Phillips, G. James, M. T. O’Brien, “An airborne multiline CO2 laser system for remote sensing of minerals,” J. Mod. Opt. 37, 1865–1871 (1990).
[CrossRef]

White, M. L.

I. S. McDermid, D. A. Haner, M. M. Kleiman, T. S. Walsh, M. L. White, “Differential absorption lidar systems for tropospheric and stratospheric ozone measurements,” Opt. Eng. 30 (1), 22–30 (1991).
[CrossRef]

Zachor, A. S.

Zanzottera, E.

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 280–319 (1990).
[CrossRef]

Zheng, R.

W. Peng, K. W. D. Ledingham, A. Marshall, R. P. Singhal, M. Campbell, R. Zheng, “A laser based procedure for the detection of atmospheric NOx gases,” AIP Conf. Proc. 329, 523–526 (1994).
[CrossRef]

AIP Conf. Proc. (1)

W. Peng, K. W. D. Ledingham, A. Marshall, R. P. Singhal, M. Campbell, R. Zheng, “A laser based procedure for the detection of atmospheric NOx gases,” AIP Conf. Proc. 329, 523–526 (1994).
[CrossRef]

Anal. Chem. (2)

E. V. Thomas, D. M. Haaland, “Comparison of multivariate calibration methods for quantitative spectral analysis,” Anal. Chem. 62, 1091–1099 (1990).
[CrossRef]

D. M. Haaland, E. V. Thomas, “Partial least squares methods for spectral analysis: relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[CrossRef]

Appl. Opt. (14)

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements,” Appl. Opt. 21, 3377–3383 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, “Assessment of relative error sources in IR DIAL measurement accuracy,” Appl. Opt. 22, 2690–2698 (1983).
[CrossRef] [PubMed]

W. B. Grant, “Water vapor absorption coefficients in the 8–13 micrometer spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
[CrossRef] [PubMed]

A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

W. B. Grant, “Effect of differential spectral reflectance on DIAL measurements using topographic targets,” Appl. Opt. 21, 2390–2394 (1982).
[CrossRef] [PubMed]

M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential reflectance of natural and man-made materials at CO2 laser wavelengths,” Appl. Opt. 21, 2386–2389 (1982).
[CrossRef] [PubMed]

W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential absorption lidar signal averaging,” Appl. Opt. 27, 1934–1938 (1988).
[CrossRef] [PubMed]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
[CrossRef] [PubMed]

C. B. Carlisle, J. E. van der Laan, L. W. Carr, P. Adam, J-P. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995).
[CrossRef] [PubMed]

R. E. Warren, “Optimum detection of multiple vapor materials using frequency agile lidar,” Appl. Opt. 35, 4180–4193 (1996).
[CrossRef] [PubMed]

A. S. Zachor, “Spectral pattern recognition in IR remote sensing,” Appl. Opt. 22, 2699–2703 (1983).
[CrossRef] [PubMed]

E. R. Murray, J. E. van der Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814–817 (1978).
[CrossRef] [PubMed]

F. R. Faxvog, H. W. Mocker, “Rapidly tunable CO2 TEA laser,” Appl. Opt. 21, 3986–3987 (1982).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10 micron) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Appl. Spectrosc. (1)

Crit. Rev. Anal. Chem. (1)

E. Zanzottera, “Differential absorption lidar techniques in the determination of trace pollutants and physical parameters of the atmosphere,” Crit. Rev. Anal. Chem. 21, 280–319 (1990).
[CrossRef]

J. Mod. Opt. (1)

L. B. Whitbourn, R. N. Phillips, G. James, M. T. O’Brien, “An airborne multiline CO2 laser system for remote sensing of minerals,” J. Mod. Opt. 37, 1865–1871 (1990).
[CrossRef]

Opt. Eng. (1)

I. S. McDermid, D. A. Haner, M. M. Kleiman, T. S. Walsh, M. L. White, “Differential absorption lidar systems for tropospheric and stratospheric ozone measurements,” Opt. Eng. 30 (1), 22–30 (1991).
[CrossRef]

Proc. IEEE (1)

E. V. Browell, “Differential absorption lidar sensing of ozone,” Proc. IEEE 77, 419–432 (1989).
[CrossRef]

Other (16)

R. M. Measures, Laser Remote Chemical Analysis, Vol. 94 in Chemical Analysis Monograph Series (Wiley, New York, 1988).

D. C. Montgomery, E. A. Peck, Introduction to Linear Regression Analysis (Wiley Interscience, New York, 1992), pp. 129–135.

S. Weisberg, Applied Linear Regression, 2nd ed. (Wiley, New York, 1985), pp. 33–45.

D. A. Skoog, D. M. West, Principles of Instrumental Analysis, 2nd ed. (Saunders, Philadelphia, Pa., 1980), pp. 738–743.

J. S. Seinfeld, Atmospheric Chemistry and Physics of Air Pollution (Wiley Interscience, New York, 1986), Chap. 14.

L. Carr, L. Fletcher, M. Crittenden, C. Carlisle, S. Gotoff, F. Reyes, F. D’Amico, “Frequency-agile CO2 DIAL for environmental monitoring,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. SPIE2112, 282–294 (1993).
[CrossRef]

J. Leonelli, P. L. Holland, J. E. van der Laan, “Multiwavelength and triple CO2 lidars for trace gas detection,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. SPIE1062, 203–216 (1989).
[CrossRef]

R. Haus, K. Schafer, D. Wehner, H. Bittner, H. Mosebach, “Remote sensing of air pollution by mobile Fourier-transform spectroscopy: modeling and first results of measurements,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 67–75.

R. J. Kricks, D. E. Pescatore, R. Lute, T. H. Prichett, “Preparation and use of synthetic mixtures in assessing performance of project-specific analysis methods software for open-path FTIR spectrophotometers,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air, and Waste Management Association, Pittsburgh, Pa., 1992), pp. 93–104.

G. M. Russwurm, “Quality assurance and the effects of spectral shifts and interfering species in FTIR analysis,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 105–111.

J. Kert, “Remote sensing of on-road vehicle emissions by an FTIR,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 325–330.

C. L. McCauley, M. J. Czerniawski, R. H. Kagann, O. A. Simpson, “Development of a user-friendly intelligent spectroscopic computer system, a case study: design of a continuous monitoring computer system,” Optical Remote Sensing: Applications to Environmental and Industrial Safety Problems, Air and Waste Management Association Conference SP-81 (Air and Waste Management Association, Pittsburgh, Pa., 1992), pp. 456–463.

W. B. Grant, “The Mobile Atmospheric Pollutant Mapping (MAPM) system: a coherent CO2 DIAL system,” in Laser Applications in Meteorology and Earth and Atmospheric Remote Sensing, M. M. Sokoloski, ed., Proc. SPIE1062, 172–190 (1989).
[CrossRef]

J. E. Peterson, D. H. Stedman, “Find and fix the polluters,” Chemtech (American Chemical Society, Washington, D.C., 1992), pp. 47–53; J. Air Waste Manage. 43, 978–988 (1993).

E. Audige, D. Thomas, J. P. Pommereau, F. Goutail, “The SANOA instrument: an integrated DOAS system using a diode array detector,” Optical Remote Sensing for Environmental and Process Monitoring, Air and Waste Management Association Conference VIP-55 (Air and Waste Management Association, Pittsburgh, Pa., 1995), pp. 67–77.

J. W. Early, C. S. Lester, C. R. Quick, J. J. Tiee, T. Shimada, N. J. Cockroft, “Continuously tunable, narrow-linewidth, Q-switched Cr:LiSAF laser for lidar applications,” OSA Proceedings on Advanced Solid State Lasers, Vol. 24, B. H. T. Chai, S. A. Payne, eds. (Optical Society of America, Washington, D.C., 1995), pp. 9–12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simplified lidar experiment schematic showing the lidar system enclosed in a dotted line; the two lasers, L1 and L2, used for measurement; the coaxial observation arrangement; collection telescope (Tel.) detector (Det.); and reference detectors, Dref. The plume and flame-sprayed aluminum target are shown in plan view separated by only a few meters, 4 m off the ground, but at ranges of several kilometers from the lidar system. The plume is shown coming out of the wind tunnel (wt). For the purpose of estimating concentrations, the plume is assumed to be Gaussian.

Fig. 2
Fig. 2

The return spectrum from three different targets: flame-sprayed aluminum (filled diamonds), plywood (filled squares), and a canvas tarp (filled triangles plus dotted curve) at a range of 3.4 km. The return energy normalized to outgoing energy is plotted for the 40 CO2 laser lines from 9R to 10P. The spectra show the effects of sharp line atmospheric absorption superimposed on the target reflectivity spectrum.

Fig. 3
Fig. 3

Absorption spectrum of chemical trichloroethane (file name 1720). FSA target distance was 3 km. The solid curve is the actual field data (80 ppm) and the dashed curve is the -predicted spectrum (54 ppm). The solid curve with filled circles is the cw laser absorption experimental trace at the actual field concentration; it represents the trace that would be predicted by the model in the case of zero concentration error.

Fig. 4
Fig. 4

Absorption spectrum of chemicals trichloroethylene and ethylene (file name 2409). FSA target distance was 7 km. The solid curve is the actual field data (48-ppm trichloroethylene, 49-ppm ethylene) and the dashed curve is the predicted spectrum (62-ppm trichloroethylene, 35-ppm ethylene). The solid curve with filled circles is the cw experimental trace at the actual field concentration; it represents the trace that would be predicted by the model in the case of zero error.

Fig. 5
Fig. 5

Absorption spectrum of chemical Freon 113 (file name 1708). FSA target distance was 3 km. The solid curve is the actual field data (40 ppm) and the dashed curve is the predicted spectrum (41 ppm). The solid curve with filled circles is the cw laser absorption experimental trace at the actual field concentration; it represents the trace that would be predicted by the model in the case of zero concentration error.

Fig. 6
Fig. 6

Absorption spectrum of chemical ethylene (file name 1722). FSA target distance was 3 km. The solid curve is the actual field data (21 ppm) and the dashed curve is the predicted spectrum (16 ppm). The solid curve with filled circles is the cw laser absorption experimental trace at the actual field concentration; it represents the trace that would be predicted by the model in the case of zero concentration error.

Fig. 7
Fig. 7

Absorption spectrum of chemicals trichloroethane and trichloroethylene (file name 1713). FSA target distance was 3 km. The solid curve is the actual field data (76-ppm trichloroethane, 76-ppm trichloroethylene) and the dashed curve is the predicted spectrum (26-ppm trichloroethane, 34-ppm trichloroethylene). The solid curve with filled circles is the cw experimental trace at the actual field concentration; it represents the trace that would be predicted by the model in the case of zero error.

Fig. 8
Fig. 8

Absorption spectrum of chemicals Freon 113 and ethylene (file name 1732). FSA target distance was 3 km. The solid curve is the actual field data (31-ppm Freon 113, 24-ppm ethylene) and the dashed curve is the predicted spectrum (22-ppm Freon 113, 16-ppm ethylene). The solid curve with filled circles is the cw experimental trace at the actual field concentration; it represents the trace that would be predicted by the model in the case of zero error.

Tables (3)

Tables Icon

Table 1 Forty CO2 Laser Lines and Corresponding Wavelengths, with Absorption Cross Sections in cm-1 atm-1

Tables Icon

Table 2 Experimental Uncertainties in Beer-Lambert Law Variables

Tables Icon

Table 3 Predicted and Actual Gas Concentrations in Plumes

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A=εbC,
C=A/εb.
A=-lnTsig/Tref,
C=-lnTsig/Tref/εb.
σC2C2=CTref2σTref2C2+CTsig2σTsig2C2+Cε2σε2C2+Cb2σb2C2,
CTsig2=lnTref/Tsig2·Tsig2-1, CTref2=lnTref/Tsig2·Tref2-1, Cε2=lnTsig/Tref2lnTref/Tsig2ε2=1ε2, Cb2=lnTsig/Tref2lnTref/Tsig2b2=1b2.
A=εbC.
Y=X×β+e,
RSS=YTY-βTXTXβ=eTe is a scalar.
σe2XTX-1.
seβi=σe2XTXii-1.
tα/2,n-iseβi,

Metrics