Abstract

Second-harmonic output at 4.6–5.5 µm of the order of 6 m W with a 0.12% external conversion efficiency has been obtained by pumping a AgGaSe2 crystal with a low-power cw CO2 laser. The surface damage threshold of AgGaSe2 for cw radiation was found to be inside the limit of 33–45 kW/cm2 in the 9.2–10.8-µm wavelength region. Another important limitation of the pump power connected with a thermal lensing effect in crystal was determined experimentally. A comparison was made of AgGaSe2 and ZnGeP2 crystals as materials suitable for the efficient generation of the second harmonic of cw CO2 laser radiation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Wells, D. A. Jennings, A. G. Maki, “Improved deuterium bromide 1-0 band molecular constants from heterodyne frequency measurements,” J. Mol. Spectrosc. 107, 48–61 (1984).
    [CrossRef]
  2. D. A. Russel, R. Ebert, “Efficient generation and heterodyne detection of 4.75-µm light with second-harmonic generation,” Appl. Opt. 32, 6638–6644 (1993).
    [CrossRef]
  3. A. J. Mannucci, “Heterodyne spectroscopy of carbon monoxide lines perturbed by hydrogen and helium,” J. Chem. Phys. 95, 7795–7802 (1991).
    [CrossRef]
  4. J. Henningsen, S. A. Trushin, T. Mogelberg, M. Hammerich, “Second harmonic and sum-frequency generation in AgGaSe2 with tunable CO2 lasers,” Appl. Phys. B 61, 291–299 (1995).
    [CrossRef]
  5. J.-J. Zondy, “Experimental investigation of single and twin AgGaSe2 crystals for cw 10.2 µm SHG,” Opt. Commun. 119, 320–326 (1995).
    [CrossRef]
  6. A. Delahaigue, C. Thiebeaux, P. Jouve, “A monochromatic and frequency stabilized cw source in the 5 µm region obtained by doubling the frequencies of a cw laser in tellurium,” Appl. Phys. 24, 21–22 (1981).
    [CrossRef]
  7. G. J. Ernst, W. J. Witteman, “Second-harmonic generation in proustite with a cw CO2 laser,” IEEE J. Quantum Electron. QE-8, 382–383 (1972).
    [CrossRef]
  8. G. C. Bhar, S. Das, K. L. Vodopyanov, “Nonlinear optical laser devices using GaSe,” Appl. Phys. B 61, 187–190 (1995).
    [CrossRef]
  9. N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
    [CrossRef]
  10. Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
    [CrossRef]
  11. L. A. Gordon, R. C. Eckardt, R. L. Byer, “Investigation of diffusion-bonded stacked GaAs for infrared quasi-phase-matched parametric oscillation,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 316–326 (1994).
    [CrossRef]
  12. G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
    [CrossRef]
  13. R. S. Feigelson, R. K. Route, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
    [CrossRef]
  14. R. S. Feigelson, R. K. Route, “Improved yield of Bridgman grown AgGaSe2 crystals using shaped crucibles,” J. Cryst. Growth 104, 789–792 (1990).
    [CrossRef]
  15. R. S. Feigelson, R. K. Route, R. J. Raymakers, “Growth of nonlinear crystals for nonlinear conversion,” Prog. Cryst. Growth Charact. 20, 115–160 (1990).
    [CrossRef]
  16. R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
    [CrossRef]
  17. R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1985).
    [CrossRef]
  18. V. V. Badikov, V. B. Laptev, V. L. Panyutin, E. A. Ryabov, G. S. Shevyrddyaeva, O. B. Scherbina, “Growth and optical properties on nonlinear silver selenogallate crystals,” Sov. J. Quantum Electron. 22, 722–724 (1992).
    [CrossRef]
  19. H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973).
    [CrossRef]
  20. G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
    [CrossRef]
  21. V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitsky, V. V. Churakov, V. N. Jakimovich, G. D. Boyd, A. A. Fomin, “Second harmonic conversion of a cw CO2 laser in AgGaSe2,” in Technical Digest of the 15th International Conference on Coherent and Nonlinear Optics, Vol. 2, N. Koroteev, ed., (Scientific Center of Russia, St. Petersburg, Russia, 1995), pp. 235–236.
  22. U. Simon, S. Waltman, I. Loa, F. K. Tittel, L. Hollberg, “Eternal-cavity difference-frequency source near 3.2 µm based on combining a tunable diode laser with a diode-pumped Nd:YAG laser in AgGaS2,” J. Opt. Soc. Am. B 12, 323–327 (1995).
    [CrossRef]
  23. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  24. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Crystals, A. E. Siegman, ed. (Springer-Verlag, Berlin, 1991), pp. 53–127.
    [CrossRef]
  25. G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
    [CrossRef]
  26. B. C. Ziegler, K. L. Schepler, “Transmission and damage-threshold measurements in AgGaSe2 at 2.1 µm,” Appl. Opt. 30, 5077–5080 (1991).
    [CrossRef] [PubMed]
  27. Z. Y. Ou, H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett. 18, 1053–1055 (1993).
    [CrossRef] [PubMed]
  28. P. K. Cheo, “Frequency synthesized and continuously tunable IR laser sources in 9–11 µm,” IEEE J. Quantum Electron. QE-20, 700–709 (1984).
    [CrossRef]

1995 (4)

J. Henningsen, S. A. Trushin, T. Mogelberg, M. Hammerich, “Second harmonic and sum-frequency generation in AgGaSe2 with tunable CO2 lasers,” Appl. Phys. B 61, 291–299 (1995).
[CrossRef]

J.-J. Zondy, “Experimental investigation of single and twin AgGaSe2 crystals for cw 10.2 µm SHG,” Opt. Commun. 119, 320–326 (1995).
[CrossRef]

G. C. Bhar, S. Das, K. L. Vodopyanov, “Nonlinear optical laser devices using GaSe,” Appl. Phys. B 61, 187–190 (1995).
[CrossRef]

U. Simon, S. Waltman, I. Loa, F. K. Tittel, L. Hollberg, “Eternal-cavity difference-frequency source near 3.2 µm based on combining a tunable diode laser with a diode-pumped Nd:YAG laser in AgGaS2,” J. Opt. Soc. Am. B 12, 323–327 (1995).
[CrossRef]

1994 (1)

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

1993 (2)

1992 (1)

V. V. Badikov, V. B. Laptev, V. L. Panyutin, E. A. Ryabov, G. S. Shevyrddyaeva, O. B. Scherbina, “Growth and optical properties on nonlinear silver selenogallate crystals,” Sov. J. Quantum Electron. 22, 722–724 (1992).
[CrossRef]

1991 (2)

A. J. Mannucci, “Heterodyne spectroscopy of carbon monoxide lines perturbed by hydrogen and helium,” J. Chem. Phys. 95, 7795–7802 (1991).
[CrossRef]

B. C. Ziegler, K. L. Schepler, “Transmission and damage-threshold measurements in AgGaSe2 at 2.1 µm,” Appl. Opt. 30, 5077–5080 (1991).
[CrossRef] [PubMed]

1990 (2)

R. S. Feigelson, R. K. Route, “Improved yield of Bridgman grown AgGaSe2 crystals using shaped crucibles,” J. Cryst. Growth 104, 789–792 (1990).
[CrossRef]

R. S. Feigelson, R. K. Route, R. J. Raymakers, “Growth of nonlinear crystals for nonlinear conversion,” Prog. Cryst. Growth Charact. 20, 115–160 (1990).
[CrossRef]

1987 (1)

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

1986 (1)

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

1985 (1)

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1985).
[CrossRef]

1984 (3)

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

P. K. Cheo, “Frequency synthesized and continuously tunable IR laser sources in 9–11 µm,” IEEE J. Quantum Electron. QE-20, 700–709 (1984).
[CrossRef]

J. S. Wells, D. A. Jennings, A. G. Maki, “Improved deuterium bromide 1-0 band molecular constants from heterodyne frequency measurements,” J. Mol. Spectrosc. 107, 48–61 (1984).
[CrossRef]

1981 (1)

A. Delahaigue, C. Thiebeaux, P. Jouve, “A monochromatic and frequency stabilized cw source in the 5 µm region obtained by doubling the frequencies of a cw laser in tellurium,” Appl. Phys. 24, 21–22 (1981).
[CrossRef]

1976 (2)

N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
[CrossRef]

R. S. Feigelson, R. K. Route, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[CrossRef]

1973 (1)

H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

1972 (2)

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

G. J. Ernst, W. J. Witteman, “Second-harmonic generation in proustite with a cw CO2 laser,” IEEE J. Quantum Electron. QE-8, 382–383 (1972).
[CrossRef]

1968 (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Andreev, Yu. M.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Badikov, V. V.

V. V. Badikov, V. B. Laptev, V. L. Panyutin, E. A. Ryabov, G. S. Shevyrddyaeva, O. B. Scherbina, “Growth and optical properties on nonlinear silver selenogallate crystals,” Sov. J. Quantum Electron. 22, 722–724 (1992).
[CrossRef]

Bhar, G. C.

G. C. Bhar, S. Das, K. L. Vodopyanov, “Nonlinear optical laser devices using GaSe,” Appl. Phys. B 61, 187–190 (1995).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Boyd, G. D.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitsky, V. V. Churakov, V. N. Jakimovich, G. D. Boyd, A. A. Fomin, “Second harmonic conversion of a cw CO2 laser in AgGaSe2,” in Technical Digest of the 15th International Conference on Coherent and Nonlinear Optics, Vol. 2, N. Koroteev, ed., (Scientific Center of Russia, St. Petersburg, Russia, 1995), pp. 235–236.

Byer, R. L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1985).
[CrossRef]

L. A. Gordon, R. C. Eckardt, R. L. Byer, “Investigation of diffusion-bonded stacked GaAs for infrared quasi-phase-matched parametric oscillation,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 316–326 (1994).
[CrossRef]

Chatterjee, U.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

Cheo, P. K.

P. K. Cheo, “Frequency synthesized and continuously tunable IR laser sources in 9–11 µm,” IEEE J. Quantum Electron. QE-20, 700–709 (1984).
[CrossRef]

Choy, M. M.

R. S. Feigelson, R. K. Route, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[CrossRef]

Churakov, V. V.

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitsky, V. V. Churakov, V. N. Jakimovich, G. D. Boyd, A. A. Fomin, “Second harmonic conversion of a cw CO2 laser in AgGaSe2,” in Technical Digest of the 15th International Conference on Coherent and Nonlinear Optics, Vol. 2, N. Koroteev, ed., (Scientific Center of Russia, St. Petersburg, Russia, 1995), pp. 235–236.

Das, S.

G. C. Bhar, S. Das, K. L. Vodopyanov, “Nonlinear optical laser devices using GaSe,” Appl. Phys. B 61, 187–190 (1995).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Delahaigue, A.

A. Delahaigue, C. Thiebeaux, P. Jouve, “A monochromatic and frequency stabilized cw source in the 5 µm region obtained by doubling the frequencies of a cw laser in tellurium,” Appl. Phys. 24, 21–22 (1981).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Crystals, A. E. Siegman, ed. (Springer-Verlag, Berlin, 1991), pp. 53–127.
[CrossRef]

Ebert, R.

Eckardt, R. C.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1985).
[CrossRef]

L. A. Gordon, R. C. Eckardt, R. L. Byer, “Investigation of diffusion-bonded stacked GaAs for infrared quasi-phase-matched parametric oscillation,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 316–326 (1994).
[CrossRef]

Ernst, G. J.

G. J. Ernst, W. J. Witteman, “Second-harmonic generation in proustite with a cw CO2 laser,” IEEE J. Quantum Electron. QE-8, 382–383 (1972).
[CrossRef]

Esterowitz, L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1985).
[CrossRef]

Feigelson, R. S.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

R. S. Feigelson, R. K. Route, “Improved yield of Bridgman grown AgGaSe2 crystals using shaped crucibles,” J. Cryst. Growth 104, 789–792 (1990).
[CrossRef]

R. S. Feigelson, R. K. Route, R. J. Raymakers, “Growth of nonlinear crystals for nonlinear conversion,” Prog. Cryst. Growth Charact. 20, 115–160 (1990).
[CrossRef]

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1985).
[CrossRef]

R. S. Feigelson, R. K. Route, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[CrossRef]

Fomin, A. A.

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitsky, V. V. Churakov, V. N. Jakimovich, G. D. Boyd, A. A. Fomin, “Second harmonic conversion of a cw CO2 laser in AgGaSe2,” in Technical Digest of the 15th International Conference on Coherent and Nonlinear Optics, Vol. 2, N. Koroteev, ed., (Scientific Center of Russia, St. Petersburg, Russia, 1995), pp. 235–236.

Ghosh, D. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Gordon, L. A.

L. A. Gordon, R. C. Eckardt, R. L. Byer, “Investigation of diffusion-bonded stacked GaAs for infrared quasi-phase-matched parametric oscillation,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 316–326 (1994).
[CrossRef]

Gorobets, V. A.

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitsky, V. V. Churakov, V. N. Jakimovich, G. D. Boyd, A. A. Fomin, “Second harmonic conversion of a cw CO2 laser in AgGaSe2,” in Technical Digest of the 15th International Conference on Coherent and Nonlinear Optics, Vol. 2, N. Koroteev, ed., (Scientific Center of Russia, St. Petersburg, Russia, 1995), pp. 235–236.

Gribenyukov, A. I.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Crystals, A. E. Siegman, ed. (Springer-Verlag, Berlin, 1991), pp. 53–127.
[CrossRef]

Hammerich, M.

J. Henningsen, S. A. Trushin, T. Mogelberg, M. Hammerich, “Second harmonic and sum-frequency generation in AgGaSe2 with tunable CO2 lasers,” Appl. Phys. B 61, 291–299 (1995).
[CrossRef]

Henningsen, J.

J. Henningsen, S. A. Trushin, T. Mogelberg, M. Hammerich, “Second harmonic and sum-frequency generation in AgGaSe2 with tunable CO2 lasers,” Appl. Phys. B 61, 291–299 (1995).
[CrossRef]

Hollberg, L.

Ipolitov, I. I.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Iseler, G. W.

N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
[CrossRef]

Jakimovich, V. N.

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitsky, V. V. Churakov, V. N. Jakimovich, G. D. Boyd, A. A. Fomin, “Second harmonic conversion of a cw CO2 laser in AgGaSe2,” in Technical Digest of the 15th International Conference on Coherent and Nonlinear Optics, Vol. 2, N. Koroteev, ed., (Scientific Center of Russia, St. Petersburg, Russia, 1995), pp. 235–236.

Jennings, D. A.

J. S. Wells, D. A. Jennings, A. G. Maki, “Improved deuterium bromide 1-0 band molecular constants from heterodyne frequency measurements,” J. Mol. Spectrosc. 107, 48–61 (1984).
[CrossRef]

Jouve, P.

A. Delahaigue, C. Thiebeaux, P. Jouve, “A monochromatic and frequency stabilized cw source in the 5 µm region obtained by doubling the frequencies of a cw laser in tellurium,” Appl. Phys. 24, 21–22 (1981).
[CrossRef]

Kasper, H. M.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Khmel’nitskii, G. S.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Kildal, H.

H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Laptev, V. B.

V. V. Badikov, V. B. Laptev, V. L. Panyutin, E. A. Ryabov, G. S. Shevyrddyaeva, O. B. Scherbina, “Growth and optical properties on nonlinear silver selenogallate crystals,” Sov. J. Quantum Electron. 22, 722–724 (1992).
[CrossRef]

Loa, I.

Maki, A. G.

J. S. Wells, D. A. Jennings, A. G. Maki, “Improved deuterium bromide 1-0 band molecular constants from heterodyne frequency measurements,” J. Mol. Spectrosc. 107, 48–61 (1984).
[CrossRef]

Mannucci, A. J.

A. J. Mannucci, “Heterodyne spectroscopy of carbon monoxide lines perturbed by hydrogen and helium,” J. Chem. Phys. 95, 7795–7802 (1991).
[CrossRef]

Marquardt, C. L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

McFee, J. H.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Menyuk, N.

N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
[CrossRef]

Mikkelsen, J. C.

H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

Mogelberg, T.

J. Henningsen, S. A. Trushin, T. Mogelberg, M. Hammerich, “Second harmonic and sum-frequency generation in AgGaSe2 with tunable CO2 lasers,” Appl. Phys. B 61, 291–299 (1995).
[CrossRef]

Mooradian, A.

N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
[CrossRef]

Morozov, A. N.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Crystals, A. E. Siegman, ed. (Springer-Verlag, Berlin, 1991), pp. 53–127.
[CrossRef]

Ou, Z. Y.

Panyutin, V. L.

V. V. Badikov, V. B. Laptev, V. L. Panyutin, E. A. Ryabov, G. S. Shevyrddyaeva, O. B. Scherbina, “Growth and optical properties on nonlinear silver selenogallate crystals,” Sov. J. Quantum Electron. 22, 722–724 (1992).
[CrossRef]

Petukhov, V. O.

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitsky, V. V. Churakov, V. N. Jakimovich, G. D. Boyd, A. A. Fomin, “Second harmonic conversion of a cw CO2 laser in AgGaSe2,” in Technical Digest of the 15th International Conference on Coherent and Nonlinear Optics, Vol. 2, N. Koroteev, ed., (Scientific Center of Russia, St. Petersburg, Russia, 1995), pp. 235–236.

Raymakers, R. J.

R. S. Feigelson, R. K. Route, R. J. Raymakers, “Growth of nonlinear crystals for nonlinear conversion,” Prog. Cryst. Growth Charact. 20, 115–160 (1990).
[CrossRef]

R. S. Feigelson, R. K. Route, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[CrossRef]

Route, R. K.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

R. S. Feigelson, R. K. Route, R. J. Raymakers, “Growth of nonlinear crystals for nonlinear conversion,” Prog. Cryst. Growth Charact. 20, 115–160 (1990).
[CrossRef]

R. S. Feigelson, R. K. Route, “Improved yield of Bridgman grown AgGaSe2 crystals using shaped crucibles,” J. Cryst. Growth 104, 789–792 (1990).
[CrossRef]

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1985).
[CrossRef]

R. S. Feigelson, R. K. Route, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[CrossRef]

Rudra, A. M.

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

Russel, D. A.

Ryabov, E. A.

V. V. Badikov, V. B. Laptev, V. L. Panyutin, E. A. Ryabov, G. S. Shevyrddyaeva, O. B. Scherbina, “Growth and optical properties on nonlinear silver selenogallate crystals,” Sov. J. Quantum Electron. 22, 722–724 (1992).
[CrossRef]

Samanta, L. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Schepler, K. L.

Scherbina, O. B.

V. V. Badikov, V. B. Laptev, V. L. Panyutin, E. A. Ryabov, G. S. Shevyrddyaeva, O. B. Scherbina, “Growth and optical properties on nonlinear silver selenogallate crystals,” Sov. J. Quantum Electron. 22, 722–724 (1992).
[CrossRef]

Shevyrddyaeva, G. S.

V. V. Badikov, V. B. Laptev, V. L. Panyutin, E. A. Ryabov, G. S. Shevyrddyaeva, O. B. Scherbina, “Growth and optical properties on nonlinear silver selenogallate crystals,” Sov. J. Quantum Electron. 22, 722–724 (1992).
[CrossRef]

Simon, U.

Sosnin, A. V.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Storm, M. E.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Storz, F. G.

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Thiebeaux, C.

A. Delahaigue, C. Thiebeaux, P. Jouve, “A monochromatic and frequency stabilized cw source in the 5 µm region obtained by doubling the frequencies of a cw laser in tellurium,” Appl. Phys. 24, 21–22 (1981).
[CrossRef]

Tittel, F. K.

Tochitsky, S. Ya.

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitsky, V. V. Churakov, V. N. Jakimovich, G. D. Boyd, A. A. Fomin, “Second harmonic conversion of a cw CO2 laser in AgGaSe2,” in Technical Digest of the 15th International Conference on Coherent and Nonlinear Optics, Vol. 2, N. Koroteev, ed., (Scientific Center of Russia, St. Petersburg, Russia, 1995), pp. 235–236.

Trushin, S. A.

J. Henningsen, S. A. Trushin, T. Mogelberg, M. Hammerich, “Second harmonic and sum-frequency generation in AgGaSe2 with tunable CO2 lasers,” Appl. Phys. B 61, 291–299 (1995).
[CrossRef]

van der Laan, J.

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1985).
[CrossRef]

Vodopyanov, K. L.

G. C. Bhar, S. Das, K. L. Vodopyanov, “Nonlinear optical laser devices using GaSe,” Appl. Phys. B 61, 187–190 (1995).
[CrossRef]

Voevodin, V. G.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Waltman, S.

Wells, J. S.

J. S. Wells, D. A. Jennings, A. G. Maki, “Improved deuterium bromide 1-0 band molecular constants from heterodyne frequency measurements,” J. Mol. Spectrosc. 107, 48–61 (1984).
[CrossRef]

Witteman, W. J.

G. J. Ernst, W. J. Witteman, “Second-harmonic generation in proustite with a cw CO2 laser,” IEEE J. Quantum Electron. QE-8, 382–383 (1972).
[CrossRef]

Ziegler, B. C.

Zondy, J.-J.

J.-J. Zondy, “Experimental investigation of single and twin AgGaSe2 crystals for cw 10.2 µm SHG,” Opt. Commun. 119, 320–326 (1995).
[CrossRef]

Zyryanov, O. Ya.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (1)

A. Delahaigue, C. Thiebeaux, P. Jouve, “A monochromatic and frequency stabilized cw source in the 5 µm region obtained by doubling the frequencies of a cw laser in tellurium,” Appl. Phys. 24, 21–22 (1981).
[CrossRef]

Appl. Phys. B (2)

J. Henningsen, S. A. Trushin, T. Mogelberg, M. Hammerich, “Second harmonic and sum-frequency generation in AgGaSe2 with tunable CO2 lasers,” Appl. Phys. B 61, 291–299 (1995).
[CrossRef]

G. C. Bhar, S. Das, K. L. Vodopyanov, “Nonlinear optical laser devices using GaSe,” Appl. Phys. B 61, 187–190 (1995).
[CrossRef]

Appl. Phys. Lett. (3)

N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976).
[CrossRef]

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1985).
[CrossRef]

IEEE J. Quantum Electron. (3)

G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

G. J. Ernst, W. J. Witteman, “Second-harmonic generation in proustite with a cw CO2 laser,” IEEE J. Quantum Electron. QE-8, 382–383 (1972).
[CrossRef]

P. K. Cheo, “Frequency synthesized and continuously tunable IR laser sources in 9–11 µm,” IEEE J. Quantum Electron. QE-20, 700–709 (1984).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Chem. Phys. (1)

A. J. Mannucci, “Heterodyne spectroscopy of carbon monoxide lines perturbed by hydrogen and helium,” J. Chem. Phys. 95, 7795–7802 (1991).
[CrossRef]

J. Cryst. Growth (2)

R. S. Feigelson, R. K. Route, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976).
[CrossRef]

R. S. Feigelson, R. K. Route, “Improved yield of Bridgman grown AgGaSe2 crystals using shaped crucibles,” J. Cryst. Growth 104, 789–792 (1990).
[CrossRef]

J. Mol. Spectrosc. (1)

J. S. Wells, D. A. Jennings, A. G. Maki, “Improved deuterium bromide 1-0 band molecular constants from heterodyne frequency measurements,” J. Mol. Spectrosc. 107, 48–61 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994).
[CrossRef]

Opt. Commun. (2)

H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

J.-J. Zondy, “Experimental investigation of single and twin AgGaSe2 crystals for cw 10.2 µm SHG,” Opt. Commun. 119, 320–326 (1995).
[CrossRef]

Opt. Lett. (1)

Prog. Cryst. Growth Charact. (1)

R. S. Feigelson, R. K. Route, R. J. Raymakers, “Growth of nonlinear crystals for nonlinear conversion,” Prog. Cryst. Growth Charact. 20, 115–160 (1990).
[CrossRef]

Sov. J. Quantum Electron. (3)

V. V. Badikov, V. B. Laptev, V. L. Panyutin, E. A. Ryabov, G. S. Shevyrddyaeva, O. B. Scherbina, “Growth and optical properties on nonlinear silver selenogallate crystals,” Sov. J. Quantum Electron. 22, 722–724 (1992).
[CrossRef]

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
[CrossRef]

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Other (3)

V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitsky, V. V. Churakov, V. N. Jakimovich, G. D. Boyd, A. A. Fomin, “Second harmonic conversion of a cw CO2 laser in AgGaSe2,” in Technical Digest of the 15th International Conference on Coherent and Nonlinear Optics, Vol. 2, N. Koroteev, ed., (Scientific Center of Russia, St. Petersburg, Russia, 1995), pp. 235–236.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Crystals, A. E. Siegman, ed. (Springer-Verlag, Berlin, 1991), pp. 53–127.
[CrossRef]

L. A. Gordon, R. C. Eckardt, R. L. Byer, “Investigation of diffusion-bonded stacked GaAs for infrared quasi-phase-matched parametric oscillation,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 316–326 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectral dependence of the SHG efficiency for AgGaSe2. The black squares and rhombuses correspond to the measured values, and the triangles and asterisks correspond to the theoretically predicted values. Error bars are the standard deviation (±σ) calculated in the normal manner.

Fig. 2
Fig. 2

Spectral dependence of the SHG efficiency for ZnGeP2. The black squares correspond to the measured values, and the triangles correspond to the theoretically predicted values. Error bars are the standard deviation (±σ) calculated in the normal manner.

Fig. 3
Fig. 3

Calculated spectral dependencies of the SHG efficiency for 1, AgGaSe2; 2, ZnGeP2 including the absorption contribution; 3, ZnGeP2 excluding the absorption contribution.

Tables (1)

Tables Icon

Table 1 Test Results on the 9P(14) Line λ = 9.5 µm with 5% Duty Cycle Chopping

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α=-1L ln1-R22TR22+1R21/2-1-R22TR2,
η=P2ω/Pω,
η=2ω2Pω1-R121-R2deff2πε0c3nω2n2ωr2×  L2,for La, Lf > Lcase 14.75 Lf2,for La > L > Lfcase 2,
deff=d36 sin θ sin2 φ,
deff=d36 sin 2 θ cos 2 φ.

Metrics