Abstract

On the basis of the idea that signal gratings have a faster formation rate than noise gratings and signal gratings have a slower erasure rate than noise gratings under the same erasing beam, we report a new technique to suppress or eliminate the noise in image processing in photorefractive crystals. A general theoretical analysis and experimental results in LiNbO3: Fe crystals are given.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rajbenbach, A. Delboulbe, J. P. Huignard, “Noise suppression in photorefractive image amplifiers,” Opt. Lett. 14, 1275–1277 (1989).
    [CrossRef] [PubMed]
  2. W. S. Rabinovich, B. J. Feldman, “Suppression of photorefractive beam fanning using achromatic gratings,” Opt. Lett. 16, 1147–1149 (1991).
    [CrossRef] [PubMed]
  3. H. Rajbenbach, A. Delboulbe, J. P. Huignard, “Low-noise amplification of ultraweak optical wave fronts in photorefractive Bi12SiO20,” Opt. Lett. 16, 1481–1483 (1991).
    [CrossRef] [PubMed]
  4. J. Joseph, P. K. C. Pillai, K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystal,” Opt. Commun. 80, 84–88 (1990).
    [CrossRef]
  5. J. Joseph, P. K. C. Pillai, K. Singh, “High-gain, low-noise signal beam amplification in photorefractive BaTiO3,” Appl. Opt. 30, 3315–3318 (1991).
    [CrossRef] [PubMed]
  6. J. Xu, G. Zhang, J. Liu, S. Liu, “Noise-free, high-gain signal beam amplification using beam fanning in a photorefractive KNbO3:Fe crystal,” Opt. Commun. 107, 99–103 (1994).
    [CrossRef]
  7. J. Xu, G. Zhang, S. Liu, J. Liu, L. Men, “Noise suppression for photorefractive image amplification in the LiNbO3:Fe crystal sheet,” Appl. Phys. Lett. 64, 2332–2334 (1994).
    [CrossRef]
  8. M. Horowitz, R. Daisy, B. Fischer, “Signal-to-pump ratio dependence of buildup and decay rates in photorefractive nonlinear two-beam coupling,” J. Opt. Soc. Am. B 9, 1685–1688 (1992).
    [CrossRef]
  9. Z. Zhang, X. Ding, Y. Zhu, Q. Jian, X. Mi, Z. Yu, P. Fu, “Noise reduction in image amplification in photorefractive BaTiO3,” Opt. Commun. 97, 105–108 (1993).
    [CrossRef]
  10. Q. B. He, P. Yeh, “Fanning noise reduction in photorefractive amplifiers using incoherent erasures,” Appl. Opt. 33, 283–287 (1994).
    [CrossRef] [PubMed]
  11. M. Snowbell, M. Horowitz, B. Fischer, “Dynamics of multiple two-wave mixing and fanning in photorefractive materials,” J. Opt. Soc. Am. B 11, 1972–1982 (1994).
    [CrossRef]
  12. P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series in Pure and Applied Optics (Wiley, New York, 1993), Chap. 3, pp. 105–111.

1994 (4)

J. Xu, G. Zhang, J. Liu, S. Liu, “Noise-free, high-gain signal beam amplification using beam fanning in a photorefractive KNbO3:Fe crystal,” Opt. Commun. 107, 99–103 (1994).
[CrossRef]

J. Xu, G. Zhang, S. Liu, J. Liu, L. Men, “Noise suppression for photorefractive image amplification in the LiNbO3:Fe crystal sheet,” Appl. Phys. Lett. 64, 2332–2334 (1994).
[CrossRef]

Q. B. He, P. Yeh, “Fanning noise reduction in photorefractive amplifiers using incoherent erasures,” Appl. Opt. 33, 283–287 (1994).
[CrossRef] [PubMed]

M. Snowbell, M. Horowitz, B. Fischer, “Dynamics of multiple two-wave mixing and fanning in photorefractive materials,” J. Opt. Soc. Am. B 11, 1972–1982 (1994).
[CrossRef]

1993 (1)

Z. Zhang, X. Ding, Y. Zhu, Q. Jian, X. Mi, Z. Yu, P. Fu, “Noise reduction in image amplification in photorefractive BaTiO3,” Opt. Commun. 97, 105–108 (1993).
[CrossRef]

1992 (1)

1991 (3)

1990 (1)

J. Joseph, P. K. C. Pillai, K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystal,” Opt. Commun. 80, 84–88 (1990).
[CrossRef]

1989 (1)

Daisy, R.

Delboulbe, A.

Ding, X.

Z. Zhang, X. Ding, Y. Zhu, Q. Jian, X. Mi, Z. Yu, P. Fu, “Noise reduction in image amplification in photorefractive BaTiO3,” Opt. Commun. 97, 105–108 (1993).
[CrossRef]

Feldman, B. J.

Fischer, B.

Fu, P.

Z. Zhang, X. Ding, Y. Zhu, Q. Jian, X. Mi, Z. Yu, P. Fu, “Noise reduction in image amplification in photorefractive BaTiO3,” Opt. Commun. 97, 105–108 (1993).
[CrossRef]

He, Q. B.

Horowitz, M.

Huignard, J. P.

Jian, Q.

Z. Zhang, X. Ding, Y. Zhu, Q. Jian, X. Mi, Z. Yu, P. Fu, “Noise reduction in image amplification in photorefractive BaTiO3,” Opt. Commun. 97, 105–108 (1993).
[CrossRef]

Joseph, J.

J. Joseph, P. K. C. Pillai, K. Singh, “High-gain, low-noise signal beam amplification in photorefractive BaTiO3,” Appl. Opt. 30, 3315–3318 (1991).
[CrossRef] [PubMed]

J. Joseph, P. K. C. Pillai, K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystal,” Opt. Commun. 80, 84–88 (1990).
[CrossRef]

Liu, J.

J. Xu, G. Zhang, J. Liu, S. Liu, “Noise-free, high-gain signal beam amplification using beam fanning in a photorefractive KNbO3:Fe crystal,” Opt. Commun. 107, 99–103 (1994).
[CrossRef]

J. Xu, G. Zhang, S. Liu, J. Liu, L. Men, “Noise suppression for photorefractive image amplification in the LiNbO3:Fe crystal sheet,” Appl. Phys. Lett. 64, 2332–2334 (1994).
[CrossRef]

Liu, S.

J. Xu, G. Zhang, J. Liu, S. Liu, “Noise-free, high-gain signal beam amplification using beam fanning in a photorefractive KNbO3:Fe crystal,” Opt. Commun. 107, 99–103 (1994).
[CrossRef]

J. Xu, G. Zhang, S. Liu, J. Liu, L. Men, “Noise suppression for photorefractive image amplification in the LiNbO3:Fe crystal sheet,” Appl. Phys. Lett. 64, 2332–2334 (1994).
[CrossRef]

Men, L.

J. Xu, G. Zhang, S. Liu, J. Liu, L. Men, “Noise suppression for photorefractive image amplification in the LiNbO3:Fe crystal sheet,” Appl. Phys. Lett. 64, 2332–2334 (1994).
[CrossRef]

Mi, X.

Z. Zhang, X. Ding, Y. Zhu, Q. Jian, X. Mi, Z. Yu, P. Fu, “Noise reduction in image amplification in photorefractive BaTiO3,” Opt. Commun. 97, 105–108 (1993).
[CrossRef]

Pillai, P. K. C.

J. Joseph, P. K. C. Pillai, K. Singh, “High-gain, low-noise signal beam amplification in photorefractive BaTiO3,” Appl. Opt. 30, 3315–3318 (1991).
[CrossRef] [PubMed]

J. Joseph, P. K. C. Pillai, K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystal,” Opt. Commun. 80, 84–88 (1990).
[CrossRef]

Rabinovich, W. S.

Rajbenbach, H.

Singh, K.

J. Joseph, P. K. C. Pillai, K. Singh, “High-gain, low-noise signal beam amplification in photorefractive BaTiO3,” Appl. Opt. 30, 3315–3318 (1991).
[CrossRef] [PubMed]

J. Joseph, P. K. C. Pillai, K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystal,” Opt. Commun. 80, 84–88 (1990).
[CrossRef]

Snowbell, M.

Xu, J.

J. Xu, G. Zhang, J. Liu, S. Liu, “Noise-free, high-gain signal beam amplification using beam fanning in a photorefractive KNbO3:Fe crystal,” Opt. Commun. 107, 99–103 (1994).
[CrossRef]

J. Xu, G. Zhang, S. Liu, J. Liu, L. Men, “Noise suppression for photorefractive image amplification in the LiNbO3:Fe crystal sheet,” Appl. Phys. Lett. 64, 2332–2334 (1994).
[CrossRef]

Yeh, P.

Q. B. He, P. Yeh, “Fanning noise reduction in photorefractive amplifiers using incoherent erasures,” Appl. Opt. 33, 283–287 (1994).
[CrossRef] [PubMed]

P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series in Pure and Applied Optics (Wiley, New York, 1993), Chap. 3, pp. 105–111.

Yu, Z.

Z. Zhang, X. Ding, Y. Zhu, Q. Jian, X. Mi, Z. Yu, P. Fu, “Noise reduction in image amplification in photorefractive BaTiO3,” Opt. Commun. 97, 105–108 (1993).
[CrossRef]

Zhang, G.

J. Xu, G. Zhang, S. Liu, J. Liu, L. Men, “Noise suppression for photorefractive image amplification in the LiNbO3:Fe crystal sheet,” Appl. Phys. Lett. 64, 2332–2334 (1994).
[CrossRef]

J. Xu, G. Zhang, J. Liu, S. Liu, “Noise-free, high-gain signal beam amplification using beam fanning in a photorefractive KNbO3:Fe crystal,” Opt. Commun. 107, 99–103 (1994).
[CrossRef]

Zhang, Z.

Z. Zhang, X. Ding, Y. Zhu, Q. Jian, X. Mi, Z. Yu, P. Fu, “Noise reduction in image amplification in photorefractive BaTiO3,” Opt. Commun. 97, 105–108 (1993).
[CrossRef]

Zhu, Y.

Z. Zhang, X. Ding, Y. Zhu, Q. Jian, X. Mi, Z. Yu, P. Fu, “Noise reduction in image amplification in photorefractive BaTiO3,” Opt. Commun. 97, 105–108 (1993).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Xu, G. Zhang, S. Liu, J. Liu, L. Men, “Noise suppression for photorefractive image amplification in the LiNbO3:Fe crystal sheet,” Appl. Phys. Lett. 64, 2332–2334 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

Z. Zhang, X. Ding, Y. Zhu, Q. Jian, X. Mi, Z. Yu, P. Fu, “Noise reduction in image amplification in photorefractive BaTiO3,” Opt. Commun. 97, 105–108 (1993).
[CrossRef]

J. Xu, G. Zhang, J. Liu, S. Liu, “Noise-free, high-gain signal beam amplification using beam fanning in a photorefractive KNbO3:Fe crystal,” Opt. Commun. 107, 99–103 (1994).
[CrossRef]

J. Joseph, P. K. C. Pillai, K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystal,” Opt. Commun. 80, 84–88 (1990).
[CrossRef]

Opt. Lett. (3)

Other (1)

P. Yeh, Introduction to Photorefractive Nonlinear Optics, Wiley Series in Pure and Applied Optics (Wiley, New York, 1993), Chap. 3, pp. 105–111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental arrangement. B1, B2, and B3, blocks;S1, beam splitter; S2, semitransparent and semireflective mirror; V, variable attenuator; M, mirror; F, filter; A, aperture; D, detector.

Fig. 2
Fig. 2

Experimental results of the (normalized) signal output buildup for various signal-to-pump ratios when the erasing beam is blocked. The signal-to-pump ratios are 9.3 × 10-5, 9.3 × 10-4, and 4.6 × 10-3, with the curves with a quicker buildup corresponding to a higher ratio.

Fig. 3
Fig. 3

Experimental results of the (normalized) signal output decay for various signal-to-pump ratios when the input signal is turned off, the power of the pump beam is adjusted to fall in the microwatt range, and a 175.1-mW/cm2 erasure beam is switched on. The signal-to-pump ratios are 9.3 × 10-5, 9.3 × 10-4, and 4.6 × 10-3, with the curves with slower decays corresponding to higher ratios.

Fig. 4
Fig. 4

Experimental results when the signal beam carries an image. The signal-to-pump intensity ratio is 9.3 × 10-4, and the erasure light intensity is 63.7 mW/cm2. (a) Results from a conventional scheme and (b) results of the new scheme suggested here.

Tables (1)

Tables Icon

Table 1 Measured Chracteristic Time Constant τ2i Values for Different Erasure Intensities Ie with a Signal-to-Pump Ratio of 9.3 × 10-4

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Et=E01-exp-t/τ, nt=n01-exp-t/τ,
Et=E0 exp-t/τ, nt=n0 exp-t/τ,
δE1t=E0-Etδt2τ1,
δE2t=-Et+δt/2δt2τ2=-Et+δE1tδt2τ2-Etδt2τ2.
δEt=δE1+δE2=E0τ1-Etτ1+Etτ2δt2.
Et=τ2τ1+τ2E01-exp-1τ1+1τ2t2.
EtE01-exp-t2τ1.
Etτ2τ1E01-exp-t2τ2.
E=τ2τ1+τ2E0.

Metrics