Abstract

We present the experimental results of a two-dimensional electro-optic dynamic diverging lens for dynamic imaging. The device is based on a lanthanum-modified lead zirconate titanate ceramic wafer. It produces a smooth phase-modulation distribution, which almost eliminates the diffraction loss of interdigital electrodes and the interference among different diffraction orders that exist in most of these types of devices. The continual change of focal length in this device is achieved by an applied control voltage. A dynamic-imaging system is demonstrated. It can be used to address three-dimensional optical memories. The aberration of the device as compared with an ideal lens is also numerically evaluated. With minor modification to the applied voltage distribution on the device, its performance is comparable with that of an ideal lens.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Esener, J. E. Ford, S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing, J. E. Person, ed., Vol. CR47 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1993), pp. 94–130.
  2. A. S. Dvornikov, P. M. Rentzepis, “2-photon 3-dimensional optical storage memory,” Adv. Chem. 240, 161–177 (1994).
    [CrossRef]
  3. G. H. Haertling, “PLZT electro-optic materials and applications—a review,” Ferroelectrics 75, 25–55 (1987).
    [CrossRef]
  4. Q. Wang Song, X.-M. Wang, R. Bussjager, “Lanthanum-modified lead zirconate titanate ceramic wafer-based electro-optic dynamic diverging lens,” Opt. Lett. 21, 242–244 (1996).
    [CrossRef]
  5. H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 493–494 (1990).
    [CrossRef]
  6. T. Tatebayashi, T. Yamamoto, H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30, 5049–5055 (1991).
    [CrossRef] [PubMed]
  7. K. Nagata, H. Honma, “Properties of PLZT shutter with copper plating electrodes,” Jpn. J. Appl. Phys. 28 (Suppl. 2), 167–169 (1989).
  8. T. Utsunomiya, “Optical switch using PLZT ceramics,” Ferroelectrics 109, 235–240 (1990).
    [CrossRef]
  9. Q. Wang Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
    [CrossRef]
  10. Q. Wang Song, X.-M. Wang, R. Bussjager, J. Osman, “Electro-optic beam-steering device based on a lanthanum-modified lead zirconate titanate ceramic wafer,” Appl. Opt. 35, 3155–3162 (1996).
    [CrossRef]
  11. J. A. Thomas, Y. Fainman, “Programmable diffractive optical element using a multichannel lathanum-modified lead zirconate titanate phase modulator,” Opt. Lett. 20, 1510–1512 (1995).
    [CrossRef] [PubMed]

1996

1995

1994

Q. Wang Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
[CrossRef]

A. S. Dvornikov, P. M. Rentzepis, “2-photon 3-dimensional optical storage memory,” Adv. Chem. 240, 161–177 (1994).
[CrossRef]

1991

1990

T. Utsunomiya, “Optical switch using PLZT ceramics,” Ferroelectrics 109, 235–240 (1990).
[CrossRef]

1989

K. Nagata, H. Honma, “Properties of PLZT shutter with copper plating electrodes,” Jpn. J. Appl. Phys. 28 (Suppl. 2), 167–169 (1989).

1987

G. H. Haertling, “PLZT electro-optic materials and applications—a review,” Ferroelectrics 75, 25–55 (1987).
[CrossRef]

Bussjager, R.

Dvornikov, A. S.

A. S. Dvornikov, P. M. Rentzepis, “2-photon 3-dimensional optical storage memory,” Adv. Chem. 240, 161–177 (1994).
[CrossRef]

Esener, S.

S. Esener, J. E. Ford, S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing, J. E. Person, ed., Vol. CR47 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1993), pp. 94–130.

Fainman, Y.

Ford, J. E.

S. Esener, J. E. Ford, S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing, J. E. Person, ed., Vol. CR47 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1993), pp. 94–130.

Haertling, G. H.

G. H. Haertling, “PLZT electro-optic materials and applications—a review,” Ferroelectrics 75, 25–55 (1987).
[CrossRef]

Hayashi, K.

H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 493–494 (1990).
[CrossRef]

Honma, H.

K. Nagata, H. Honma, “Properties of PLZT shutter with copper plating electrodes,” Jpn. J. Appl. Phys. 28 (Suppl. 2), 167–169 (1989).

Hunter, S.

S. Esener, J. E. Ford, S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing, J. E. Person, ed., Vol. CR47 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1993), pp. 94–130.

Maurice, J. H.

Q. Wang Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
[CrossRef]

Nagata, K.

K. Nagata, H. Honma, “Properties of PLZT shutter with copper plating electrodes,” Jpn. J. Appl. Phys. 28 (Suppl. 2), 167–169 (1989).

Osman, J.

Rentzepis, P. M.

A. S. Dvornikov, P. M. Rentzepis, “2-photon 3-dimensional optical storage memory,” Adv. Chem. 240, 161–177 (1994).
[CrossRef]

Sato, H.

T. Tatebayashi, T. Yamamoto, H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30, 5049–5055 (1991).
[CrossRef] [PubMed]

H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 493–494 (1990).
[CrossRef]

Talbot, P. J.

Q. Wang Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
[CrossRef]

Tatebayashi, T.

T. Tatebayashi, T. Yamamoto, H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30, 5049–5055 (1991).
[CrossRef] [PubMed]

H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 493–494 (1990).
[CrossRef]

Thomas, J. A.

Utsunomiya, T.

T. Utsunomiya, “Optical switch using PLZT ceramics,” Ferroelectrics 109, 235–240 (1990).
[CrossRef]

Wang, X.-M.

Wang Song, Q.

Yamamoto, T.

T. Tatebayashi, T. Yamamoto, H. Sato, “Electro-optic variable focal-length lens using PLZT ceramic,” Appl. Opt. 30, 5049–5055 (1991).
[CrossRef] [PubMed]

H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 493–494 (1990).
[CrossRef]

Adv. Chem.

A. S. Dvornikov, P. M. Rentzepis, “2-photon 3-dimensional optical storage memory,” Adv. Chem. 240, 161–177 (1994).
[CrossRef]

Appl. Opt.

Ferroelectrics

G. H. Haertling, “PLZT electro-optic materials and applications—a review,” Ferroelectrics 75, 25–55 (1987).
[CrossRef]

T. Utsunomiya, “Optical switch using PLZT ceramics,” Ferroelectrics 109, 235–240 (1990).
[CrossRef]

J. Mod. Opt.

Q. Wang Song, P. J. Talbot, J. H. Maurice, “PLZT based high-efficiency electro-optic grating for optical switching,” J. Mod. Opt. 41, 717–727 (1994).
[CrossRef]

Jpn. J. Appl. Phys.

K. Nagata, H. Honma, “Properties of PLZT shutter with copper plating electrodes,” Jpn. J. Appl. Phys. 28 (Suppl. 2), 167–169 (1989).

Opt. Lett.

Other

S. Esener, J. E. Ford, S. Hunter, “Optical data storage and retrieval: research directions for the 90’s,” in Optical Technologies for Aerospace Sensing, J. E. Person, ed., Vol. CR47 of SPIE Critical Reviews Series (SPIE Press, Bellingham, Wash., 1993), pp. 94–130.

H. Sato, T. Tatebayashi, T. Yamamoto, K. Hayashi, “Electro-optic lens composed of transparent electrodes on PLZT ceramic towards optoelectronic devices,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. SPIE1319, 493–494 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Cross-sectional view of the PLZT-based electro-optic variable cylindrical lens.

Fig. 2
Fig. 2

Two-dimensional focusing effect with a 2 mm × 2 mm lens composed of two crossed dynamic cylindrical lenses put back to back (a) without an external source and (b) with an applied voltage of 400 V.

Fig. 3
Fig. 3

Dynamic-imaging demonstration system. The imaging distance is controlled by the voltage on the electro-optic lens.

Fig. 4
Fig. 4

Two-dimensional dynamic-imaging experimental results for a 3 mm × 3 mm electro-optic lens in the system shown in Fig. 3 (a) without external source and (b) with an applied voltage of 330 V.

Fig. 5
Fig. 5

Time-response measurement setup.

Fig. 6
Fig. 6

Potential boundary condition at the top surface of the PLZT substrate.

Fig. 7
Fig. 7

Simulated potential distribution inside the PLZT substrate for an applied voltage of 200 V.

Fig. 8
Fig. 8

Simulated electrical-field distributions for (a) the x component and (b) the z component. Absolute values of the amplitude are used.

Fig. 9
Fig. 9

Simulated electrical-field distribution for comparison with the z component of Fig. 8.

Fig. 10
Fig. 10

Simulated comparison of x- and z-polarized phase distributions with that of the ideal case at 200 V.

Fig. 11
Fig. 11

Simulated comparison of (a) x-polarized and (b) z-polarized light phase distributions with that of an ideal case at 200 V.

Fig. 12
Fig. 12

Simulated comparison of (a) x-polarized and (b) z-polarized light phase distributions with that of an ideal case at 200 V and a bias of 0.1 on the center.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

f=W2t4n03R12V2,
Vx, 0=0xa22x-aW-aVa2<xW2,VW2<xW2+d
Vx, t=0.
Vx+nW+2d, 0=Vx, 0,
Vx, 0=V0+n=1Pξncosξnx,
ξn=2nπW+2d,
V0=1W+2d-W2+dW2+d Vx, 0dx,
Pξn=2W+2d-W2+dW2+dVx, 0cosξnxdx.
Vx, y=1-ytV0+n=1Pξncosξnxsinhξnt-ysinhξnt.
Exx, y=-Vx, yx=n=1 ξnPξnsinξnxsinhξnt-ysinhξnt,
Eyx, y=-Vx, yy=V0t+n=1 ξnPξncosξnxcoshξnt-ysinhξnt.
nxx, y=n0-12n03R11Ex2x, y+R12Ey2x, y,
nzx, y=n0-12n03R12Ex2x, y+Ey2x, y.
ϕxx=2πλ0tnxx, ydy,
ϕzx=2πλ0tnzx, ydy,

Metrics