Abstract

We report on the high-resolution observation of biological samples in water with a collection-mode near-field optical microscope (c-mode NOM) operating under optical feedback control. With rapidly decreasing evanescent field power used as the feedback signal, for the first time to our knowledge, an image of straight-type flagellar filaments of salmonella in water has been obtained. The estimated diameter of a single filament is around 55 nm with a pixel size of 10 nm. A comparison with its nominal value of 25 nm obtained from electron microscope observations under high vacuum confirms that our c-mode NOM performs high-resolution imaging in water.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, D. Courjon, eds., Near Field Optics, Vol. 242 of NATO ASI series E (Kluwer, Dordrecht, The Netherlands, 1993).
  2. M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Ligtwave Technol. 13, 1200–1221 (1995).
    [CrossRef]
  3. The other generally used mode of operation is the illumination-mode NOM in which light from a nanometric aperture illuminates the sample and the scattered light is collected. Other terms used are SNOM or NSOM. For the acronyms appearing here, refer to the list compiled by Pohl and Courjon.1
  4. D. Courjon, K. Sarayaddine, M. Spajer, “Scanning tunneling optical microscope,” Opt. Commun. 71, 23–28 (1989).
    [CrossRef]
  5. E. Bezig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [CrossRef]
  6. H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
    [CrossRef]
  7. K. Jang, W. Jhe, “Nonglobal model for a near-field scanning optical microscope using diffraction of the optical near field,” Opt. Lett. 21, 236–238 (1996).
    [CrossRef] [PubMed]
  8. T. Saiki, M. Ohtsu, K. Jang, W. Jhe, “Direct observation of the size-dependent feature of the optical near field on a subwavelength spherical surface,” Opt. Lett. 21, 674–676 (1996).
    [CrossRef] [PubMed]
  9. M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biosamples by a collection mode photon scanning tunneling microscope with an apertured probe,” Opt. Commun. 124, 9–15 (1996).
    [CrossRef]
  10. T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1993).
    [CrossRef]
  11. S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave. Technol. 14, 2231–2235 (1996).
    [CrossRef]
  12. S. Mononobe, M. Naya, S. Saiki, M. Ohtsu, “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics,” Appl. Opt. 36, 1496–1500 (1997).
    [CrossRef] [PubMed]

1997 (1)

1996 (4)

K. Jang, W. Jhe, “Nonglobal model for a near-field scanning optical microscope using diffraction of the optical near field,” Opt. Lett. 21, 236–238 (1996).
[CrossRef] [PubMed]

T. Saiki, M. Ohtsu, K. Jang, W. Jhe, “Direct observation of the size-dependent feature of the optical near field on a subwavelength spherical surface,” Opt. Lett. 21, 674–676 (1996).
[CrossRef] [PubMed]

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biosamples by a collection mode photon scanning tunneling microscope with an apertured probe,” Opt. Commun. 124, 9–15 (1996).
[CrossRef]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave. Technol. 14, 2231–2235 (1996).
[CrossRef]

1995 (2)

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Ligtwave Technol. 13, 1200–1221 (1995).
[CrossRef]

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
[CrossRef]

1993 (1)

T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1993).
[CrossRef]

1992 (1)

E. Bezig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

1989 (1)

D. Courjon, K. Sarayaddine, M. Spajer, “Scanning tunneling optical microscope,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Ataka, T.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
[CrossRef]

Bezig, E.

E. Bezig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

Chiba, N.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
[CrossRef]

Courjon, D.

D. Courjon, K. Sarayaddine, M. Spajer, “Scanning tunneling optical microscope,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Fujihira, M.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
[CrossRef]

Homma, K.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
[CrossRef]

Jang, K.

Jhe, W.

Jiang, S.

T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1993).
[CrossRef]

Kusumi, A.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
[CrossRef]

Mononobe, S.

S. Mononobe, M. Naya, S. Saiki, M. Ohtsu, “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics,” Appl. Opt. 36, 1496–1500 (1997).
[CrossRef] [PubMed]

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biosamples by a collection mode photon scanning tunneling microscope with an apertured probe,” Opt. Commun. 124, 9–15 (1996).
[CrossRef]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave. Technol. 14, 2231–2235 (1996).
[CrossRef]

Muramatsu, H.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
[CrossRef]

Nakajima, K.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
[CrossRef]

Naya, M.

S. Mononobe, M. Naya, S. Saiki, M. Ohtsu, “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics,” Appl. Opt. 36, 1496–1500 (1997).
[CrossRef] [PubMed]

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biosamples by a collection mode photon scanning tunneling microscope with an apertured probe,” Opt. Commun. 124, 9–15 (1996).
[CrossRef]

Ohta, S.

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
[CrossRef]

Ohtsu, M.

S. Mononobe, M. Naya, S. Saiki, M. Ohtsu, “Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics,” Appl. Opt. 36, 1496–1500 (1997).
[CrossRef] [PubMed]

T. Saiki, M. Ohtsu, K. Jang, W. Jhe, “Direct observation of the size-dependent feature of the optical near field on a subwavelength spherical surface,” Opt. Lett. 21, 674–676 (1996).
[CrossRef] [PubMed]

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biosamples by a collection mode photon scanning tunneling microscope with an apertured probe,” Opt. Commun. 124, 9–15 (1996).
[CrossRef]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave. Technol. 14, 2231–2235 (1996).
[CrossRef]

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Ligtwave Technol. 13, 1200–1221 (1995).
[CrossRef]

T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1993).
[CrossRef]

Pangaribuan, T.

T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1993).
[CrossRef]

Saiki, S.

Saiki, T.

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biosamples by a collection mode photon scanning tunneling microscope with an apertured probe,” Opt. Commun. 124, 9–15 (1996).
[CrossRef]

T. Saiki, M. Ohtsu, K. Jang, W. Jhe, “Direct observation of the size-dependent feature of the optical near field on a subwavelength spherical surface,” Opt. Lett. 21, 674–676 (1996).
[CrossRef] [PubMed]

Sarayaddine, K.

D. Courjon, K. Sarayaddine, M. Spajer, “Scanning tunneling optical microscope,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Spajer, M.

D. Courjon, K. Sarayaddine, M. Spajer, “Scanning tunneling optical microscope,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

Trautman, J. K.

E. Bezig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

Uma Maheswari, R.

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biosamples by a collection mode photon scanning tunneling microscope with an apertured probe,” Opt. Commun. 124, 9–15 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Muramatsu, N. Chiba, K. Homma, K. Nakajima, T. Ataka, S. Ohta, A. Kusumi, M. Fujihira, “Near-field optical microscopy in liquid,” Appl. Phys. Lett. 12, 3245–3247 (1995).
[CrossRef]

J. Lightwave. Technol. (1)

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave. Technol. 14, 2231–2235 (1996).
[CrossRef]

J. Ligtwave Technol. (1)

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Ligtwave Technol. 13, 1200–1221 (1995).
[CrossRef]

Opt. Commun. (2)

D. Courjon, K. Sarayaddine, M. Spajer, “Scanning tunneling optical microscope,” Opt. Commun. 71, 23–28 (1989).
[CrossRef]

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biosamples by a collection mode photon scanning tunneling microscope with an apertured probe,” Opt. Commun. 124, 9–15 (1996).
[CrossRef]

Opt. Lett. (2)

Scanning (1)

T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1993).
[CrossRef]

Science (1)

E. Bezig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef]

Other (2)

The other generally used mode of operation is the illumination-mode NOM in which light from a nanometric aperture illuminates the sample and the scattered light is collected. Other terms used are SNOM or NSOM. For the acronyms appearing here, refer to the list compiled by Pohl and Courjon.1

D. W. Pohl, D. Courjon, eds., Near Field Optics, Vol. 242 of NATO ASI series E (Kluwer, Dordrecht, The Netherlands, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified schematic view of the experimental setup. The acrylic ring makes the surface tension of the water uniform, allowing the probe tip to be immersed in water without bending. Inset: Electron micrograph of the probe. The cone angle of the sharpened core is 14 deg, and the diameter at the foot of the protrusion with a metal coating is 30 nm.

Fig. 2
Fig. 2

Transmission electron micrograph of FFS obtained in vacuum.

Fig. 3
Fig. 3

Three-dimensional view image of FFS in water obtained by the collection-mode NOM. The arrows represent the directions of wave-vector k of the incident light and electric-field vector E.

Fig. 4
Fig. 4

Cross-sectional profile of the detected signal intensity for the part identified by a white bar in Fig. 3. The FWHM of the bright region is 55 nm.

Metrics