Abstract

The imaging resolution in turbid media is severely degraded by light scattering. Resolution can be improved if the unscattered or weakly scattered light is extracted. Here the state of polarization of the emerging light is used to discriminate photon path length, with the more weakly scattered photons maintaining their original polarization state. It is experimentally demonstrated that over a wide range of scatterer concentrations there exist three distinct imaging regimes. It is also shown that within the intermediate regime one of two distinct imaging techniques is appropriate, depending on the particle size.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Das, K. K. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step towards optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef]
  2. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
    [CrossRef] [PubMed]
  3. E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
    [CrossRef]
  4. E. A. Bucher, R. M. Lerner, “Experiments on light pulse communication and propagation through atmospheric clouds,” Appl. Opt. 12, 2401–2414 (1973).
    [CrossRef] [PubMed]
  5. See A. K. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, San Diego, Calif., 1978).
  6. See, for example, Wave Propagation and Scattering in Random Media, J. Opt. Soc. Am. A 2, no. 12 (1985)
  7. G. E. Anderson, F. Liu, R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19, 981–983 (1994).
    [CrossRef] [PubMed]
  8. J. M. Schmitt, A. Knuttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
    [CrossRef]
  9. J. B. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–141 (1993).
    [CrossRef] [PubMed]
  10. M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two dimensional coherent imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
    [CrossRef]
  11. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, E. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993).
    [CrossRef] [PubMed]
  12. S. P. Morgan, R. K. Appel, M. G. Somekh, “Experimental studies of the factors affecting spatial resolution in continuous wave transillumination through scattering media,” Bioimaging 2, 163–173 (1994).
    [CrossRef]
  13. D. S. Dilworth, E. N. Leith, J. L. Lopez, “Imaging absorbing structures within thick diffusing media,” Appl. Opt. 29, 691–698 (1990).
    [CrossRef] [PubMed]
  14. S. P. Morgan, M. G. Somekh, “Application of spatial filtering techniques to frequency domain imaging through scattering media,” in Photon Propagation in Tissues, B. Chance, D. T. Delphy, G. J. Mueller, eds., Proc. SPIE2626, 334–345 (1995).
    [CrossRef]
  15. See, for example, D. Eliyahu, M. Rosenbluh, I. Freund, “Angular intensity and polarization dependence of diffuse transmission through random media,” J. Opt. Soc. Am. A 10, 477–491 (1993).
  16. J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate shortpath photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
    [CrossRef] [PubMed]
  17. P. Bruscaglioni, G. Zaccanti, Q. Wei, “Transmission of a pulsed polarized light beam through thick turbid media: numerical results,” Appl. Opt. 32, 6142–6150 (1993).
    [CrossRef] [PubMed]
  18. J. M. Schmitt, A. Knuttel, J. R. Knutson, “Interference of diffusive light waves,” J. Opt. Soc. Am. A 9, 1832–1843 (1992).
    [CrossRef] [PubMed]
  19. D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
    [CrossRef]
  20. S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
    [CrossRef] [PubMed]

1994

J. M. Schmitt, A. Knuttel, M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
[CrossRef]

S. P. Morgan, R. K. Appel, M. G. Somekh, “Experimental studies of the factors affecting spatial resolution in continuous wave transillumination through scattering media,” Bioimaging 2, 163–173 (1994).
[CrossRef]

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

G. E. Anderson, F. Liu, R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19, 981–983 (1994).
[CrossRef] [PubMed]

1993

1992

1991

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two dimensional coherent imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

1990

1985

See, for example, Wave Propagation and Scattering in Random Media, J. Opt. Soc. Am. A 2, no. 12 (1985)

1983

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
[CrossRef] [PubMed]

1973

Alfano, R. R.

Anderson, G. E.

Appel, R. K.

S. P. Morgan, R. K. Appel, M. G. Somekh, “Experimental studies of the factors affecting spatial resolution in continuous wave transillumination through scattering media,” Bioimaging 2, 163–173 (1994).
[CrossRef]

Bentzen, S. M.

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
[CrossRef] [PubMed]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Bonner, R. F.

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Bruscaglioni, P.

Bucher, E. A.

Chance, B.

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Das, B. B.

Dilworth, D. S.

Eliyahu, D.

Fishkin, J. B.

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

J. B. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–141 (1993).
[CrossRef] [PubMed]

Freund, I.

Fujimoto, J. G.

Gandjbakhche, A. H.

Gratton, E.

J. B. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–141 (1993).
[CrossRef] [PubMed]

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Hebden, J. C.

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

Hee, M. R.

Ichimura, T.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two dimensional coherent imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Inaba, H.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two dimensional coherent imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Ishimaru, A. K.

See A. K. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, San Diego, Calif., 1978).

Izatt, J. A.

Jacobson, J. M.

Knutson, J. R.

Knuttel, A.

Kondo, M.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two dimensional coherent imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Leith, E. N.

Lerner, R. M.

Liu, F.

Lopez, J. L.

Mantulin, W. W.

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Maris, M. B.

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Morgan, S. P.

S. P. Morgan, R. K. Appel, M. G. Somekh, “Experimental studies of the factors affecting spatial resolution in continuous wave transillumination through scattering media,” Bioimaging 2, 163–173 (1994).
[CrossRef]

S. P. Morgan, M. G. Somekh, “Application of spatial filtering techniques to frequency domain imaging through scattering media,” in Photon Propagation in Tissues, B. Chance, D. T. Delphy, G. J. Mueller, eds., Proc. SPIE2626, 334–345 (1995).
[CrossRef]

Rosenbluh, M.

Schmitt, J. M.

Somekh, M. G.

S. P. Morgan, R. K. Appel, M. G. Somekh, “Experimental studies of the factors affecting spatial resolution in continuous wave transillumination through scattering media,” Bioimaging 2, 163–173 (1994).
[CrossRef]

S. P. Morgan, M. G. Somekh, “Application of spatial filtering techniques to frequency domain imaging through scattering media,” in Photon Propagation in Tissues, B. Chance, D. T. Delphy, G. J. Mueller, eds., Proc. SPIE2626, 334–345 (1995).
[CrossRef]

Swanson, E.

Toida, M.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two dimensional coherent imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

van de Ven, M. J.

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Wei, Q.

Yadlowsky, M.

Yoo, K. K.

Zaccanti, G.

Appl. Opt.

Appl. Phys. B

M. Toida, M. Kondo, T. Ichimura, H. Inaba, “Two dimensional coherent imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Bioimaging

S. P. Morgan, R. K. Appel, M. G. Somekh, “Experimental studies of the factors affecting spatial resolution in continuous wave transillumination through scattering media,” Bioimaging 2, 163–173 (1994).
[CrossRef]

E. Gratton, W. W. Mantulin, M. J. van de Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. E

D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Other

S. P. Morgan, M. G. Somekh, “Application of spatial filtering techniques to frequency domain imaging through scattering media,” in Photon Propagation in Tissues, B. Chance, D. T. Delphy, G. J. Mueller, eds., Proc. SPIE2626, 334–345 (1995).
[CrossRef]

See A. K. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, San Diego, Calif., 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Parameters for microsphere solutions: (a) loge (ρ) vs scatterer concentration, (b) P l vs scatterer concentration. The line drawn through the points is intended as a guide to the eye.

Fig. 3
Fig. 3

Parameters for milk solutions: (a) loge (ρ) vs scatterer concentration, (b) P l vs scatterer concentration. The line drawn through the points is intended as a guide to the eye.

Fig. 4
Fig. 4

Theoretical validation of polarization regimes. Curves for g = 0.3 and g = 0.9 are from the model of Bicout et al. [Eq. (4) ].

Fig. 5
Fig. 5

Summary of polarization regimes.

Fig. 6
Fig. 6

Typical edge response in regime 1 (microsphere concentration = 2/200 mL). The resolution is good because a high proportion of unscattered light is detected (resolution = 0.7 mm).

Fig. 7
Fig. 7

Typical edge response in regime 3 (milk concentration = 50/240 mL). The resolution is poor regardless of polarization state because the light has completely randomized (resolution = 9.9 mm).

Fig. 8
Fig. 8

Typical edge response in regime 2 for the microsphere solutions (microsphere concentration = 6/200 mL). There is better resolution in the 0° polarization state (0° resolution = 3.8 mm, 90° resolution = 7.4 mm).

Fig. 9
Fig. 9

(a) Edge responses at 0° (resolution = 4.2 mm) and 90° (resolution = 8.7 mm) before subtraction. (b) Subtracted edge response (milk concentration = 36/240 mL) (resolution = 0.7 mm).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ=unscattered+scatteredscattered
Pl=P0-P90P0+P90,
T=To exp-μsD,
Pl=2Dl*sinhl*ξlexp-Dξl,
l*=l1-g,
ξl=l*3 ln107-1/2
unscattered+scattered 0°-scattered 90°=unscattered

Metrics