Abstract

The refractive index and its variation with temperature, the thermo-optic coefficient (dn/dT), are analyzed with two separate physically meaningful models for more than a dozen of some important Schott and Ohara optical glasses to find the refractive index at any operating temperature for any wavelength throughout the transmission region. The room-temperature catalog values of refractive indices are fitted with a two-pole Sellmeier equation. Both the average electronic absorption band gap and the lattice absorption frequency, lying in the vacuum UV and IR regions, respectively, contribute to the refractive indices and their dispersion. The estimated absorption band gaps are at 8.5–11.9 eV, and these values agree with the measured values at 8.8–11.6 eV satisfactorily for normal optical glasses. The higher-index glasses have electronic absorption in the region of 5.6–6.3 eV, and the estimated band gap of SF6 glass is 6.0 eV. The dispersion of thermo-optic coefficients is accounted for satisfactorily with a model, based on three physical parameters, the thermal expansion coefficient and excitonic and isentropic optical band gaps that are in the vacuum UV region. These optical constants are used to compute refractive indices at any operating temperature and wavelength. The Abbé number and the chromatic dispersion characteristics of these glasses are evaluated from the computed optical constants; the values of the chromatic dispersions are evaluated particularly at the three optical windows of the optical fiber communication systems and femtosecond technology.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Schott Optical Glass Catalog (Schott Glass Technologies Inc., Duryea, Pa., 1992).
  2. Ohara Optical Glass Catalog (OHARA Inc., Kanagawa, 1990).
  3. G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” IEEE J. Lightwave Technol. 12, 1338–1342 (1994).
    [CrossRef]
  4. S. Hirota, T. Izumitani, R. Onaka, “Reflection spectra of various kinds of oxide glasses and fluoride glasses in the vacuum ultraviolet region,” J. Non-Cryst. Solids 72, 39–50 (1985).
    [CrossRef]
  5. G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–197 (1995); “Thermo-optic coefficients of LiNbO3, LiIO3 and LiTaO3 nonlinear crystals,” Opt. Lett. 19, 1391–1393 (1994).
    [CrossRef]
  6. G. Ghosh, “Temperature dispersion of refractive indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
    [CrossRef]
  7. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
    [CrossRef]

1995 (1)

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–197 (1995); “Thermo-optic coefficients of LiNbO3, LiIO3 and LiTaO3 nonlinear crystals,” Opt. Lett. 19, 1391–1393 (1994).
[CrossRef]

1994 (2)

G. Ghosh, “Temperature dispersion of refractive indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” IEEE J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

1991 (1)

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

1985 (1)

S. Hirota, T. Izumitani, R. Onaka, “Reflection spectra of various kinds of oxide glasses and fluoride glasses in the vacuum ultraviolet region,” J. Non-Cryst. Solids 72, 39–50 (1985).
[CrossRef]

Endo, M.

G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” IEEE J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Fujinaga, S.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Ghosh, G.

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–197 (1995); “Thermo-optic coefficients of LiNbO3, LiIO3 and LiTaO3 nonlinear crystals,” Opt. Lett. 19, 1391–1393 (1994).
[CrossRef]

G. Ghosh, “Temperature dispersion of refractive indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” IEEE J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Hirota, S.

S. Hirota, T. Izumitani, R. Onaka, “Reflection spectra of various kinds of oxide glasses and fluoride glasses in the vacuum ultraviolet region,” J. Non-Cryst. Solids 72, 39–50 (1985).
[CrossRef]

Iwasaki, T.

G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” IEEE J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

Izumitani, T.

S. Hirota, T. Izumitani, R. Onaka, “Reflection spectra of various kinds of oxide glasses and fluoride glasses in the vacuum ultraviolet region,” J. Non-Cryst. Solids 72, 39–50 (1985).
[CrossRef]

Kitamura, N.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Kitaoka, T.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Matsuoka, J.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Onaka, R.

S. Hirota, T. Izumitani, R. Onaka, “Reflection spectra of various kinds of oxide glasses and fluoride glasses in the vacuum ultraviolet region,” J. Non-Cryst. Solids 72, 39–50 (1985).
[CrossRef]

Yamashita, H.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

IEEE J. Lightwave Technol. (1)

G. Ghosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” IEEE J. Lightwave Technol. 12, 1338–1342 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Ghosh, “Temperature dispersion of refractive indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

J. Non-Cryst. Solids (3)

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

S. Hirota, T. Izumitani, R. Onaka, “Reflection spectra of various kinds of oxide glasses and fluoride glasses in the vacuum ultraviolet region,” J. Non-Cryst. Solids 72, 39–50 (1985).
[CrossRef]

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–197 (1995); “Thermo-optic coefficients of LiNbO3, LiIO3 and LiTaO3 nonlinear crystals,” Opt. Lett. 19, 1391–1393 (1994).
[CrossRef]

Other (2)

Schott Optical Glass Catalog (Schott Glass Technologies Inc., Duryea, Pa., 1992).

Ohara Optical Glass Catalog (OHARA Inc., Kanagawa, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Refractive index versus wavelength for some selected Schott and Ohara optical glasses at 20 °C.

Fig. 2
Fig. 2

Energy level diagram for optical glasses.

Fig. 3
Fig. 3

2n (dn/dT) versus wavelength for some selected Ohara and Schott optical glasses: solid curves, computed values; solid circles, experimental data; upper and lower curves, 60 and -40 °C, respectively: (a) BAL4, (b) BAL11, (c) BAL23, (d) BSM4, (e) BSM24, (f) NSL5, (g) S-LAM2, (h) S-BSL7, (i) S-FSL5, (j) SLAL10, (k) ZSL1, (l) SSL6, (m) PBH6, (n) KzFS6.

Fig. 4
Fig. 4

Chromatic dispersion characteristics of some selected Schott and Ohara optical glasses at 20 °C.

Tables (4)

Tables Icon

Table 1 Sellmeier Coefficients for Some Selected Schott and Ohara Optical Glasses at 20 °Ca

Tables Icon

Table 2 Interpolated Coefficients G and H and a Comparison of the Theoretical and Experimental Linear Expansion Coefficients, the Temperature Coefficient of the Excitonic Band Gap, and the Excitonic and Isentropic Band Gaps of some Selected Ohara and Schott Optical Glasses at 20 °C

Tables Icon

Table 3 Temperature-Dependent Optical Constant H for Some Selected Ohara and Schott Optical Glasses

Tables Icon

Table 4 Optical Properties of Some Selected Schott and Ohara Optical Glasses at 20 °C

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n2=A+B/1-C/λ2+D/1-E/λ2,
Eg=1.24/C in electron volts.
2ndndT=n2-1-3α-1EegdEegdTEig2Eig2-E2,
2n dndT=K2-3αR-1EegdEegdT R2,
2ndndT=GR+HR2.
HT=H0+H1T+H2T2,
νd=nd-1/nf-nc,
V=-λcd2nλdλ2,
V=-1/cn-4/λ5BC2/1-C/λ23+DE2/×1-E/λ23+λdn/dλ2+3ndn/dλ,
dn/dλ=-1/nλ3BC/1-C/λ22+DE/1-E/λ22

Metrics