Abstract

I describe a nematic liquid-crystal spatial light modulator that can be used as a high-precision wave-front control device. I present results showing the open-loop correction of wave-front aberrations and demonstrate wave-front shaping by the production and quantification of the first 15 significant Zernike terms.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Love, J. V. Major, A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
    [CrossRef] [PubMed]
  2. D. M. Pepper, C. J. Celestino, D. V. Mitchell, “Real-time holography, innovative adaptive optics, and compensated optical processors using spatial light modulators,” in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1995), pp. 585–665.
  3. S. R. Restaino, E. L. Gates, R. A. Carreras, R. Dymale, G. C. Loos, “Use of electro-optical devices for optical path-length compensation,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 494–500 (1994).
    [CrossRef]
  4. A. Purvis, N. B. Bailey, G. D. Love, J. V. Major, “Optical design, simulation, and testing of an addressable 64 × 64 liquid crystal phase plate,” in Current Developments in Optical Design and Optical Engineering, R. E. Fischer, W. J. Smith, eds., Proc. SPIE2000, 96–100 (1993).
    [CrossRef]
  5. G. D. Love, S. R. Restaino, G. C. Loos, A. Purvis, “Wave-front control using a 64 × 64 pixel liquid crystal array,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 1068–1072 (1994).
    [CrossRef]
  6. R. Dou, M. K. Giles, “Closed-loop adaptive optics system with a liquid crystal television as a phase retarder,” Opt. Lett. 20, 1583–1585 (1995).
    [CrossRef] [PubMed]
  7. G. D. Love, S. R. Restaino, R. A. Carreras, G. C. Loos, R. M. Sharples, R. V. Morrison, “High quality wave-front control with a liquid crystal spatial light modulator,” in Adaptive Optics, Vol. 23 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 223–224.
  8. G. D. Love, J. S. Fender, S. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photon. News, 16–21 (Oct.1995).
  9. Meadowlark Optics, 7460 Weld County Road 1, Longmont, Colo. 8050-9470.
  10. Zygo Corporation, Laurel Brook Road, Middlefield, Conn. 06455-0488.
  11. J. Y. Wang, J. K. Markey, “Modal compensation of atmospheric turbulence phase distortion,” J. Opt. Soc. Am. 68, 78–87 (1978).
    [CrossRef]
  12. C. J. Kim, R. R. Shannon, “Catalog of Zernike polynomials,” in Applied Optics and Optical Engineering (Academic, Orlando, Fla., 1987), pp. 193–221.
  13. G. D. Love, “Liquid crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
    [CrossRef] [PubMed]
  14. G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, G. Kopp, “Polarization insensitive 127-segment liquid crystal wave-front corrector,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 288–290.
  15. R. K. Tyson, Principles of Adaptive Optics (Academic, Orlando, Fla., 1991).
  16. R. Q. Fugate, “Observations of faint objects with laser beacon adaptive optics,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 10–21 (1994).
    [CrossRef]
  17. S. T. Wu, C. S. Wu, “Small angled relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794 (1988).
    [CrossRef]
  18. P. J. Bos, K. R. Koehler/Beran, “The Pi-Cell: A fast new liquid crystal switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
    [CrossRef]
  19. S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 µs at room temperature,” Appl. Phys. Lett. 57, 968–988 (1990).
    [CrossRef]
  20. G. D. Love, N. Andrews, P. Birch, D. Buscher, P. Doel, C. Dunlop, J. Major, R. Myers, A. Purvis, R. Sharples, A. Vick, A. Zadrozny, S. R. Restaino, A. Glindemann, “Binary adaptive optics—atmospheric wave-front correction using a half–wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995); Addendum 35, 347–350 (1996).
  21. A. Glindemann, “Improved performance of adaptive optics in the visible,” J. Opt. Soc. Am. A 11, 1370–1375 (1994).
    [CrossRef]
  22. B. Hulburd, D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186–1190 (1990).
    [CrossRef]
  23. M. A. Ealey, “Precision motion under intelligent control: actuator technology moves into commercial venture,” Vol. 133 in (SPIE, Bellingham, Wash., 1995).
  24. J. Liang, D. R. Williams, “New objective measurements of the wave aberrations of the human eye,” Invest. Ophthalmol. Visual Science 36(4), Program 882 (1995); also, D. R. Williams, “Applications for adaptive optics in human vision,” presented at SPIE Adaptive Optics Working Group Meeting (San Diego, Calif., 1995).

1995

G. D. Love, J. S. Fender, S. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photon. News, 16–21 (Oct.1995).

J. Liang, D. R. Williams, “New objective measurements of the wave aberrations of the human eye,” Invest. Ophthalmol. Visual Science 36(4), Program 882 (1995); also, D. R. Williams, “Applications for adaptive optics in human vision,” presented at SPIE Adaptive Optics Working Group Meeting (San Diego, Calif., 1995).

R. Dou, M. K. Giles, “Closed-loop adaptive optics system with a liquid crystal television as a phase retarder,” Opt. Lett. 20, 1583–1585 (1995).
[CrossRef] [PubMed]

G. D. Love, N. Andrews, P. Birch, D. Buscher, P. Doel, C. Dunlop, J. Major, R. Myers, A. Purvis, R. Sharples, A. Vick, A. Zadrozny, S. R. Restaino, A. Glindemann, “Binary adaptive optics—atmospheric wave-front correction using a half–wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995); Addendum 35, 347–350 (1996).

1994

1993

1990

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 µs at room temperature,” Appl. Phys. Lett. 57, 968–988 (1990).
[CrossRef]

B. Hulburd, D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186–1190 (1990).
[CrossRef]

1988

S. T. Wu, C. S. Wu, “Small angled relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794 (1988).
[CrossRef]

1984

P. J. Bos, K. R. Koehler/Beran, “The Pi-Cell: A fast new liquid crystal switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[CrossRef]

1978

Andrews, N.

Bailey, N. B.

A. Purvis, N. B. Bailey, G. D. Love, J. V. Major, “Optical design, simulation, and testing of an addressable 64 × 64 liquid crystal phase plate,” in Current Developments in Optical Design and Optical Engineering, R. E. Fischer, W. J. Smith, eds., Proc. SPIE2000, 96–100 (1993).
[CrossRef]

Baur, T.

G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, G. Kopp, “Polarization insensitive 127-segment liquid crystal wave-front corrector,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 288–290.

Birch, P.

Bos, P. J.

P. J. Bos, K. R. Koehler/Beran, “The Pi-Cell: A fast new liquid crystal switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[CrossRef]

Buscher, D.

Carreras, R. A.

S. R. Restaino, E. L. Gates, R. A. Carreras, R. Dymale, G. C. Loos, “Use of electro-optical devices for optical path-length compensation,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 494–500 (1994).
[CrossRef]

G. D. Love, S. R. Restaino, R. A. Carreras, G. C. Loos, R. M. Sharples, R. V. Morrison, “High quality wave-front control with a liquid crystal spatial light modulator,” in Adaptive Optics, Vol. 23 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 223–224.

Carreras, R. C.

G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, G. Kopp, “Polarization insensitive 127-segment liquid crystal wave-front corrector,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 288–290.

Celestino, C. J.

D. M. Pepper, C. J. Celestino, D. V. Mitchell, “Real-time holography, innovative adaptive optics, and compensated optical processors using spatial light modulators,” in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1995), pp. 585–665.

Doel, P.

Dou, R.

Dunlop, C.

Dymale, R.

S. R. Restaino, E. L. Gates, R. A. Carreras, R. Dymale, G. C. Loos, “Use of electro-optical devices for optical path-length compensation,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 494–500 (1994).
[CrossRef]

Ealey, M. A.

M. A. Ealey, “Precision motion under intelligent control: actuator technology moves into commercial venture,” Vol. 133 in (SPIE, Bellingham, Wash., 1995).

Fender, J. S.

G. D. Love, J. S. Fender, S. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photon. News, 16–21 (Oct.1995).

Fugate, R. Q.

R. Q. Fugate, “Observations of faint objects with laser beacon adaptive optics,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 10–21 (1994).
[CrossRef]

Gates, E. L.

S. R. Restaino, E. L. Gates, R. A. Carreras, R. Dymale, G. C. Loos, “Use of electro-optical devices for optical path-length compensation,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 494–500 (1994).
[CrossRef]

Giles, M. K.

Glindemann, A.

Hulburd, B.

B. Hulburd, D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186–1190 (1990).
[CrossRef]

Kim, C. J.

C. J. Kim, R. R. Shannon, “Catalog of Zernike polynomials,” in Applied Optics and Optical Engineering (Academic, Orlando, Fla., 1987), pp. 193–221.

Koehler/Beran, K. R.

P. J. Bos, K. R. Koehler/Beran, “The Pi-Cell: A fast new liquid crystal switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[CrossRef]

Kopp, G.

G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, G. Kopp, “Polarization insensitive 127-segment liquid crystal wave-front corrector,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 288–290.

Liang, J.

J. Liang, D. R. Williams, “New objective measurements of the wave aberrations of the human eye,” Invest. Ophthalmol. Visual Science 36(4), Program 882 (1995); also, D. R. Williams, “Applications for adaptive optics in human vision,” presented at SPIE Adaptive Optics Working Group Meeting (San Diego, Calif., 1995).

Loos, G. C.

G. D. Love, S. R. Restaino, G. C. Loos, A. Purvis, “Wave-front control using a 64 × 64 pixel liquid crystal array,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 1068–1072 (1994).
[CrossRef]

S. R. Restaino, E. L. Gates, R. A. Carreras, R. Dymale, G. C. Loos, “Use of electro-optical devices for optical path-length compensation,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 494–500 (1994).
[CrossRef]

G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, G. Kopp, “Polarization insensitive 127-segment liquid crystal wave-front corrector,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 288–290.

G. D. Love, S. R. Restaino, R. A. Carreras, G. C. Loos, R. M. Sharples, R. V. Morrison, “High quality wave-front control with a liquid crystal spatial light modulator,” in Adaptive Optics, Vol. 23 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 223–224.

Love, G. D.

G. D. Love, N. Andrews, P. Birch, D. Buscher, P. Doel, C. Dunlop, J. Major, R. Myers, A. Purvis, R. Sharples, A. Vick, A. Zadrozny, S. R. Restaino, A. Glindemann, “Binary adaptive optics—atmospheric wave-front correction using a half–wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995); Addendum 35, 347–350 (1996).

G. D. Love, J. S. Fender, S. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photon. News, 16–21 (Oct.1995).

G. D. Love, J. V. Major, A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
[CrossRef] [PubMed]

G. D. Love, “Liquid crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
[CrossRef] [PubMed]

A. Purvis, N. B. Bailey, G. D. Love, J. V. Major, “Optical design, simulation, and testing of an addressable 64 × 64 liquid crystal phase plate,” in Current Developments in Optical Design and Optical Engineering, R. E. Fischer, W. J. Smith, eds., Proc. SPIE2000, 96–100 (1993).
[CrossRef]

G. D. Love, S. R. Restaino, G. C. Loos, A. Purvis, “Wave-front control using a 64 × 64 pixel liquid crystal array,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 1068–1072 (1994).
[CrossRef]

G. D. Love, S. R. Restaino, R. A. Carreras, G. C. Loos, R. M. Sharples, R. V. Morrison, “High quality wave-front control with a liquid crystal spatial light modulator,” in Adaptive Optics, Vol. 23 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 223–224.

G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, G. Kopp, “Polarization insensitive 127-segment liquid crystal wave-front corrector,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 288–290.

Major, J.

Major, J. V.

G. D. Love, J. V. Major, A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
[CrossRef] [PubMed]

A. Purvis, N. B. Bailey, G. D. Love, J. V. Major, “Optical design, simulation, and testing of an addressable 64 × 64 liquid crystal phase plate,” in Current Developments in Optical Design and Optical Engineering, R. E. Fischer, W. J. Smith, eds., Proc. SPIE2000, 96–100 (1993).
[CrossRef]

Markey, J. K.

Mitchell, D. V.

D. M. Pepper, C. J. Celestino, D. V. Mitchell, “Real-time holography, innovative adaptive optics, and compensated optical processors using spatial light modulators,” in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1995), pp. 585–665.

Morrison, R. V.

G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, G. Kopp, “Polarization insensitive 127-segment liquid crystal wave-front corrector,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 288–290.

G. D. Love, S. R. Restaino, R. A. Carreras, G. C. Loos, R. M. Sharples, R. V. Morrison, “High quality wave-front control with a liquid crystal spatial light modulator,” in Adaptive Optics, Vol. 23 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 223–224.

Myers, R.

Pepper, D. M.

D. M. Pepper, C. J. Celestino, D. V. Mitchell, “Real-time holography, innovative adaptive optics, and compensated optical processors using spatial light modulators,” in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1995), pp. 585–665.

Purvis, A.

G. D. Love, N. Andrews, P. Birch, D. Buscher, P. Doel, C. Dunlop, J. Major, R. Myers, A. Purvis, R. Sharples, A. Vick, A. Zadrozny, S. R. Restaino, A. Glindemann, “Binary adaptive optics—atmospheric wave-front correction using a half–wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995); Addendum 35, 347–350 (1996).

G. D. Love, J. V. Major, A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
[CrossRef] [PubMed]

G. D. Love, S. R. Restaino, G. C. Loos, A. Purvis, “Wave-front control using a 64 × 64 pixel liquid crystal array,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 1068–1072 (1994).
[CrossRef]

A. Purvis, N. B. Bailey, G. D. Love, J. V. Major, “Optical design, simulation, and testing of an addressable 64 × 64 liquid crystal phase plate,” in Current Developments in Optical Design and Optical Engineering, R. E. Fischer, W. J. Smith, eds., Proc. SPIE2000, 96–100 (1993).
[CrossRef]

Restaino, S.

G. D. Love, J. S. Fender, S. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photon. News, 16–21 (Oct.1995).

Restaino, S. R.

G. D. Love, N. Andrews, P. Birch, D. Buscher, P. Doel, C. Dunlop, J. Major, R. Myers, A. Purvis, R. Sharples, A. Vick, A. Zadrozny, S. R. Restaino, A. Glindemann, “Binary adaptive optics—atmospheric wave-front correction using a half–wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995); Addendum 35, 347–350 (1996).

G. D. Love, S. R. Restaino, G. C. Loos, A. Purvis, “Wave-front control using a 64 × 64 pixel liquid crystal array,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 1068–1072 (1994).
[CrossRef]

S. R. Restaino, E. L. Gates, R. A. Carreras, R. Dymale, G. C. Loos, “Use of electro-optical devices for optical path-length compensation,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 494–500 (1994).
[CrossRef]

G. D. Love, S. R. Restaino, R. A. Carreras, G. C. Loos, R. M. Sharples, R. V. Morrison, “High quality wave-front control with a liquid crystal spatial light modulator,” in Adaptive Optics, Vol. 23 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 223–224.

G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, G. Kopp, “Polarization insensitive 127-segment liquid crystal wave-front corrector,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 288–290.

Sandler, D.

B. Hulburd, D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186–1190 (1990).
[CrossRef]

Shannon, R. R.

C. J. Kim, R. R. Shannon, “Catalog of Zernike polynomials,” in Applied Optics and Optical Engineering (Academic, Orlando, Fla., 1987), pp. 193–221.

Sharples, R.

Sharples, R. M.

G. D. Love, S. R. Restaino, R. A. Carreras, G. C. Loos, R. M. Sharples, R. V. Morrison, “High quality wave-front control with a liquid crystal spatial light modulator,” in Adaptive Optics, Vol. 23 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 223–224.

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (Academic, Orlando, Fla., 1991).

Vick, A.

Wang, J. Y.

Williams, D. R.

J. Liang, D. R. Williams, “New objective measurements of the wave aberrations of the human eye,” Invest. Ophthalmol. Visual Science 36(4), Program 882 (1995); also, D. R. Williams, “Applications for adaptive optics in human vision,” presented at SPIE Adaptive Optics Working Group Meeting (San Diego, Calif., 1995).

Wu, C. S.

S. T. Wu, C. S. Wu, “Small angled relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794 (1988).
[CrossRef]

Wu, S. T.

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 µs at room temperature,” Appl. Phys. Lett. 57, 968–988 (1990).
[CrossRef]

S. T. Wu, C. S. Wu, “Small angled relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794 (1988).
[CrossRef]

Zadrozny, A.

Appl. Opt.

Appl. Phys. Lett.

S. T. Wu, C. S. Wu, “Small angled relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794 (1988).
[CrossRef]

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 µs at room temperature,” Appl. Phys. Lett. 57, 968–988 (1990).
[CrossRef]

Invest. Ophthalmol. Visual Science

J. Liang, D. R. Williams, “New objective measurements of the wave aberrations of the human eye,” Invest. Ophthalmol. Visual Science 36(4), Program 882 (1995); also, D. R. Williams, “Applications for adaptive optics in human vision,” presented at SPIE Adaptive Optics Working Group Meeting (San Diego, Calif., 1995).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Mol. Cryst. Liq. Cryst.

P. J. Bos, K. R. Koehler/Beran, “The Pi-Cell: A fast new liquid crystal switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[CrossRef]

Opt. Eng.

B. Hulburd, D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186–1190 (1990).
[CrossRef]

Opt. Lett.

Opt. Photon. News

G. D. Love, J. S. Fender, S. Restaino, “Adaptive wave-front shaping with liquid crystals,” Opt. Photon. News, 16–21 (Oct.1995).

Other

Meadowlark Optics, 7460 Weld County Road 1, Longmont, Colo. 8050-9470.

Zygo Corporation, Laurel Brook Road, Middlefield, Conn. 06455-0488.

G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, G. Kopp, “Polarization insensitive 127-segment liquid crystal wave-front corrector,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 288–290.

R. K. Tyson, Principles of Adaptive Optics (Academic, Orlando, Fla., 1991).

R. Q. Fugate, “Observations of faint objects with laser beacon adaptive optics,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 10–21 (1994).
[CrossRef]

D. M. Pepper, C. J. Celestino, D. V. Mitchell, “Real-time holography, innovative adaptive optics, and compensated optical processors using spatial light modulators,” in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1995), pp. 585–665.

S. R. Restaino, E. L. Gates, R. A. Carreras, R. Dymale, G. C. Loos, “Use of electro-optical devices for optical path-length compensation,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 494–500 (1994).
[CrossRef]

A. Purvis, N. B. Bailey, G. D. Love, J. V. Major, “Optical design, simulation, and testing of an addressable 64 × 64 liquid crystal phase plate,” in Current Developments in Optical Design and Optical Engineering, R. E. Fischer, W. J. Smith, eds., Proc. SPIE2000, 96–100 (1993).
[CrossRef]

G. D. Love, S. R. Restaino, G. C. Loos, A. Purvis, “Wave-front control using a 64 × 64 pixel liquid crystal array,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 1068–1072 (1994).
[CrossRef]

G. D. Love, S. R. Restaino, R. A. Carreras, G. C. Loos, R. M. Sharples, R. V. Morrison, “High quality wave-front control with a liquid crystal spatial light modulator,” in Adaptive Optics, Vol. 23 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 223–224.

C. J. Kim, R. R. Shannon, “Catalog of Zernike polynomials,” in Applied Optics and Optical Engineering (Academic, Orlando, Fla., 1987), pp. 193–221.

M. A. Ealey, “Precision motion under intelligent control: actuator technology moves into commercial venture,” Vol. 133 in (SPIE, Bellingham, Wash., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Pixel layout of the LC SLM. The individual pixels can be seen as hexagons. The narrow strips around the active area are the transparent electrodes leading to each pixel. The large circle indicates the active area for a circular aperture.

Fig. 2
Fig. 2

Experimental apparatus used to test the LC SLM.

Fig. 3
Fig. 3

Correction of static wave-front aberrations with the LC SLM. The top two plots are uncorrected and corrected gray-scale phase maps as measured by the interferometer. The bottom two plots show the expected PSF’s obtained by Fourier transforming the phase maps.

Fig. 4
Fig. 4

The generation of Zernike aberrations with the LC SLM. 1a–15a, normalized gray-scale phase maps, as measured by the interferometer; 1b–15b, corresponding theoretical maps. The amplitude of each term corresponds to the rms value expected from Kolmogorov turbulence for D/r 0 = 10.

Fig. 5
Fig. 5

Results showing the amplitude of each Zernike aberration as applied to the LC SLM. White bars, applied theoretical values; black bars, experimentally measured values. The mean absolute deviation between the lines is 0.04 waves, and the maximum deviation is 0.09.

Fig. 6
Fig. 6

Comparison of astigmatic wave fronts. The first column shows theoretical values with an amplitude varying from 0.1 (He–Ne) waves at the bottom in steps of 0.1 waves to 1 wave at the top. The second column shows simulation results of the hexagonally pixelated structure. The third column shows experimentally measured phase maps produced by the Zygo interferometer. The fourth column shows the error arrays produced by subtracting the first and third columns.

Fig. 7
Fig. 7

Fitting error of the LC SLM against Zernike amplitude for z = 1 to z = 15. Solid lines, simulated values; crosses, experimentally measured values. Some of the experimentally measured values are missing because the Zygo interferometer cannot always measure a discontinuous structure.

Fig. 8
Fig. 8

Experimentally measured PSF’s produced by the LC SLM for the first 15 Zernike modes. Z = 0 is for no induced aberration. The amplitude was 0.5 (He–Ne) waves in each case.

Fig. 9
Fig. 9

Calculation of the degradation of the Strehl ratio with spectral bandwidth for correction modulo 2π. Solid curve, a tip-tilt corrected system; dashed curve, a totally uncorrected system. Telescope diameter, 4 m; r 0 = 15 cm.

Tables (2)

Tables Icon

Table 1 Specifications of the LC SLM

Tables Icon

Table 2 Calculation of the Amplitude of each Zernike Term to be Applied to the LC SLM

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

applied amplitude=N2πvariance D/r05/31/2.
σ2=2πnrms2Δλ/λ,
σu2=αD/r05/3,
nrms=floorσu222π,

Metrics