Abstract

We propose a new type of fiber probe with a nanometric protruding tip emerging from a metal film and describe a novel method, called the selective resin-coating method, for fabricating such probes. It is a reproducible etching process consisting of four steps and can be applied to silica fibers sharpened by selective chemical etching. With this method, we obtained tips with the apex diameter and the foot diameter of the protrusion being less than 10 and 30 nm, respectively, when the gold film was ∼120 nm thick.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, D. Courjon, eds., Near Field Optics, Vol. 242 of NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1993).
  2. M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13, 1200–1221 (1995).
    [Crossref]
  3. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Fynn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
    [Crossref]
  4. S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992).
    [Crossref]
  5. R. Uma Maheswari, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurones with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
    [Crossref]
  6. M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biological samples by a collection-mode photon scanning tunneling microscope,” Opt. Commun. 124, 9–15 (1996).
    [Crossref]
  7. R. Uma Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
    [Crossref]
  8. E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
    [Crossref] [PubMed]
  9. R. D. Grober, T. D. Harris, J. K. Trautman, E. Bezig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
    [Crossref]
  10. T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Spatially resolved photoluminescence spectroscopy of lateral p–n junctions prepared by Si-doped GaAs using a photon scanning tunneling microscope,” Appl. Phys. Lett. 67, 2191–2193 (1995).
    [Crossref]
  11. Y. Toda, M. Kourogi, M. Ohtsu, Y. Nagamune, Y. Arakawa, “Spatially and spectrally resolved imaging of GaAs quantum-dot structures using near-field optical technique,” Appl. Phys. Lett. 69, 827–829 (1996).
    [Crossref]
  12. H. Hori, “Quantum optical picture of photon STM and proposal of single atom manipulation,” in Ref. 1, pp. 105–114.
  13. K. Jang, W. Jhe, “Nonglobal model for near-field scanning optical microscope using diffraction of the optical near field,” Opt. Lett. 21, 1–3 (1996).
    [Crossref]
  14. T. Saiki, M. Ohtsu, K. Jang, W. Jhe, “Direct observation of size-dependent features of the optical near field on a subwavelength spherical surface,” Opt. Lett. 21, 674–676 (1996).
    [Crossref] [PubMed]
  15. T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
    [Crossref]
  16. S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996); Erratum, J. Lightwave Technol. 15, 162 (1997).
  17. For example, see M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, M. Nishimura, “Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB,” Electron. Lett. 30, 161–162 (1994).
  18. For example, see C.-C. Yang, J. Y. Josefowicz, L. Alexandru, “Deposition of ultrathin films by a withdrawal method,” Thin Solid Films 74, 117–127 (1980).
  19. The aperture diameter is as in Ref. 20.
  20. T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Tailoring a high-transmission fiber probe for a photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
    [Crossref]
  21. In this measurement, actually an objective lens of N.A. 0.4 was used, and for comparison a value of a transmission coefficient has been corrected to a lens of N.A. 1.
  22. G. A. Valaskovic, M. Holton, G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995).
    [Crossref] [PubMed]
  23. In the collection mode NOM, the sample is illuminated under total internal reflection, a nanometric probe tip is used as a scatterer of the evanescent field over the sample, and the scattered field is detected.
  24. R. Uma Maheswari, S. Mononobe, M. Ohtsu, “Control of apex shape of the fiber probe employed in photon scanning tunneling microscope by a multistep etching method,” J. Lightwave Technol. 13, 2308–2313 (1995).
    [Crossref]

1996 (7)

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biological samples by a collection-mode photon scanning tunneling microscope,” Opt. Commun. 124, 9–15 (1996).
[Crossref]

R. Uma Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[Crossref]

Y. Toda, M. Kourogi, M. Ohtsu, Y. Nagamune, Y. Arakawa, “Spatially and spectrally resolved imaging of GaAs quantum-dot structures using near-field optical technique,” Appl. Phys. Lett. 69, 827–829 (1996).
[Crossref]

K. Jang, W. Jhe, “Nonglobal model for near-field scanning optical microscope using diffraction of the optical near field,” Opt. Lett. 21, 1–3 (1996).
[Crossref]

T. Saiki, M. Ohtsu, K. Jang, W. Jhe, “Direct observation of size-dependent features of the optical near field on a subwavelength spherical surface,” Opt. Lett. 21, 674–676 (1996).
[Crossref] [PubMed]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996); Erratum, J. Lightwave Technol. 15, 162 (1997).

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Tailoring a high-transmission fiber probe for a photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[Crossref]

1995 (5)

G. A. Valaskovic, M. Holton, G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995).
[Crossref] [PubMed]

R. Uma Maheswari, S. Mononobe, M. Ohtsu, “Control of apex shape of the fiber probe employed in photon scanning tunneling microscope by a multistep etching method,” J. Lightwave Technol. 13, 2308–2313 (1995).
[Crossref]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Spatially resolved photoluminescence spectroscopy of lateral p–n junctions prepared by Si-doped GaAs using a photon scanning tunneling microscope,” Appl. Phys. Lett. 67, 2191–2193 (1995).
[Crossref]

R. Uma Maheswari, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurones with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13, 1200–1221 (1995).
[Crossref]

1994 (3)

T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
[Crossref]

R. D. Grober, T. D. Harris, J. K. Trautman, E. Bezig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[Crossref]

For example, see M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, M. Nishimura, “Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB,” Electron. Lett. 30, 161–162 (1994).

1993 (1)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[Crossref] [PubMed]

1992 (2)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Fynn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992).
[Crossref]

1980 (1)

For example, see C.-C. Yang, J. Y. Josefowicz, L. Alexandru, “Deposition of ultrathin films by a withdrawal method,” Thin Solid Films 74, 117–127 (1980).

Alexandru, L.

For example, see C.-C. Yang, J. Y. Josefowicz, L. Alexandru, “Deposition of ultrathin films by a withdrawal method,” Thin Solid Films 74, 117–127 (1980).

Arakawa, Y.

Y. Toda, M. Kourogi, M. Ohtsu, Y. Nagamune, Y. Arakawa, “Spatially and spectrally resolved imaging of GaAs quantum-dot structures using near-field optical technique,” Appl. Phys. Lett. 69, 827–829 (1996).
[Crossref]

Betzig, E.

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[Crossref] [PubMed]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Fynn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Bezig, E.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Bezig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[Crossref]

Chang, C.-H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Fynn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Chichester, R. J.

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[Crossref] [PubMed]

Fynn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Fynn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Grober, R. D.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Bezig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[Crossref]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Fynn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Harris, T. D.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Bezig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[Crossref]

Holton, M.

Ikai, A.

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992).
[Crossref]

Imai, K.

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992).
[Crossref]

Jang, K.

Jhe, W.

Jiang, S.

T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
[Crossref]

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992).
[Crossref]

Josefowicz, J. Y.

For example, see C.-C. Yang, J. Y. Josefowicz, L. Alexandru, “Deposition of ultrathin films by a withdrawal method,” Thin Solid Films 74, 117–127 (1980).

Kanamori, H.

For example, see M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, M. Nishimura, “Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB,” Electron. Lett. 30, 161–162 (1994).

Katayama, Y.

R. Uma Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[Crossref]

R. Uma Maheswari, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurones with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

Kourogi, M.

Y. Toda, M. Kourogi, M. Ohtsu, Y. Nagamune, Y. Arakawa, “Spatially and spectrally resolved imaging of GaAs quantum-dot structures using near-field optical technique,” Appl. Phys. Lett. 69, 827–829 (1996).
[Crossref]

Koyano, Y.

For example, see M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, M. Nishimura, “Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB,” Electron. Lett. 30, 161–162 (1994).

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Fynn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Kusano, J.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Tailoring a high-transmission fiber probe for a photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[Crossref]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Spatially resolved photoluminescence spectroscopy of lateral p–n junctions prepared by Si-doped GaAs using a photon scanning tunneling microscope,” Appl. Phys. Lett. 67, 2191–2193 (1995).
[Crossref]

Mononobe, S.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Tailoring a high-transmission fiber probe for a photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[Crossref]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996); Erratum, J. Lightwave Technol. 15, 162 (1997).

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biological samples by a collection-mode photon scanning tunneling microscope,” Opt. Commun. 124, 9–15 (1996).
[Crossref]

R. Uma Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[Crossref]

R. Uma Maheswari, S. Mononobe, M. Ohtsu, “Control of apex shape of the fiber probe employed in photon scanning tunneling microscope by a multistep etching method,” J. Lightwave Technol. 13, 2308–2313 (1995).
[Crossref]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Spatially resolved photoluminescence spectroscopy of lateral p–n junctions prepared by Si-doped GaAs using a photon scanning tunneling microscope,” Appl. Phys. Lett. 67, 2191–2193 (1995).
[Crossref]

Morrison, G. H.

Nagamune, Y.

Y. Toda, M. Kourogi, M. Ohtsu, Y. Nagamune, Y. Arakawa, “Spatially and spectrally resolved imaging of GaAs quantum-dot structures using near-field optical technique,” Appl. Phys. Lett. 69, 827–829 (1996).
[Crossref]

Naya, M.

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biological samples by a collection-mode photon scanning tunneling microscope,” Opt. Commun. 124, 9–15 (1996).
[Crossref]

Nishimura, M.

For example, see M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, M. Nishimura, “Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB,” Electron. Lett. 30, 161–162 (1994).

Ohsawa, H.

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992).
[Crossref]

Ohtsu, M.

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biological samples by a collection-mode photon scanning tunneling microscope,” Opt. Commun. 124, 9–15 (1996).
[Crossref]

R. Uma Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[Crossref]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996); Erratum, J. Lightwave Technol. 15, 162 (1997).

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Tailoring a high-transmission fiber probe for a photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[Crossref]

Y. Toda, M. Kourogi, M. Ohtsu, Y. Nagamune, Y. Arakawa, “Spatially and spectrally resolved imaging of GaAs quantum-dot structures using near-field optical technique,” Appl. Phys. Lett. 69, 827–829 (1996).
[Crossref]

T. Saiki, M. Ohtsu, K. Jang, W. Jhe, “Direct observation of size-dependent features of the optical near field on a subwavelength spherical surface,” Opt. Lett. 21, 674–676 (1996).
[Crossref] [PubMed]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Spatially resolved photoluminescence spectroscopy of lateral p–n junctions prepared by Si-doped GaAs using a photon scanning tunneling microscope,” Appl. Phys. Lett. 67, 2191–2193 (1995).
[Crossref]

R. Uma Maheswari, S. Mononobe, M. Ohtsu, “Control of apex shape of the fiber probe employed in photon scanning tunneling microscope by a multistep etching method,” J. Lightwave Technol. 13, 2308–2313 (1995).
[Crossref]

R. Uma Maheswari, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurones with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13, 1200–1221 (1995).
[Crossref]

T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
[Crossref]

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992).
[Crossref]

Onishi, M.

For example, see M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, M. Nishimura, “Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB,” Electron. Lett. 30, 161–162 (1994).

Pangaribuan, T.

T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
[Crossref]

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992).
[Crossref]

Pfeiffer, L.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Bezig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[Crossref]

Saiki, T.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Tailoring a high-transmission fiber probe for a photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[Crossref]

T. Saiki, M. Ohtsu, K. Jang, W. Jhe, “Direct observation of size-dependent features of the optical near field on a subwavelength spherical surface,” Opt. Lett. 21, 674–676 (1996).
[Crossref] [PubMed]

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biological samples by a collection-mode photon scanning tunneling microscope,” Opt. Commun. 124, 9–15 (1996).
[Crossref]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Spatially resolved photoluminescence spectroscopy of lateral p–n junctions prepared by Si-doped GaAs using a photon scanning tunneling microscope,” Appl. Phys. Lett. 67, 2191–2193 (1995).
[Crossref]

Saito, N.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Tailoring a high-transmission fiber probe for a photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[Crossref]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Spatially resolved photoluminescence spectroscopy of lateral p–n junctions prepared by Si-doped GaAs using a photon scanning tunneling microscope,” Appl. Phys. Lett. 67, 2191–2193 (1995).
[Crossref]

Shigematsu, M.

For example, see M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, M. Nishimura, “Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB,” Electron. Lett. 30, 161–162 (1994).

Tatsumi, H.

R. Uma Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[Crossref]

R. Uma Maheswari, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurones with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

Toda, Y.

Y. Toda, M. Kourogi, M. Ohtsu, Y. Nagamune, Y. Arakawa, “Spatially and spectrally resolved imaging of GaAs quantum-dot structures using near-field optical technique,” Appl. Phys. Lett. 69, 827–829 (1996).
[Crossref]

Trautman, J. K.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Bezig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[Crossref]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Fynn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Uma Maheswari, R.

R. Uma Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[Crossref]

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biological samples by a collection-mode photon scanning tunneling microscope,” Opt. Commun. 124, 9–15 (1996).
[Crossref]

R. Uma Maheswari, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurones with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

R. Uma Maheswari, S. Mononobe, M. Ohtsu, “Control of apex shape of the fiber probe employed in photon scanning tunneling microscope by a multistep etching method,” J. Lightwave Technol. 13, 2308–2313 (1995).
[Crossref]

Valaskovic, G. A.

Wegscheider, W.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Bezig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[Crossref]

West, K.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Bezig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[Crossref]

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Fynn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Yamada, K.

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992).
[Crossref]

Yang, C.-C.

For example, see C.-C. Yang, J. Y. Josefowicz, L. Alexandru, “Deposition of ultrathin films by a withdrawal method,” Thin Solid Films 74, 117–127 (1980).

Appl. Opt. (1)

Appl. Phys. Lett. (5)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Fynn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

R. D. Grober, T. D. Harris, J. K. Trautman, E. Bezig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[Crossref]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Spatially resolved photoluminescence spectroscopy of lateral p–n junctions prepared by Si-doped GaAs using a photon scanning tunneling microscope,” Appl. Phys. Lett. 67, 2191–2193 (1995).
[Crossref]

Y. Toda, M. Kourogi, M. Ohtsu, Y. Nagamune, Y. Arakawa, “Spatially and spectrally resolved imaging of GaAs quantum-dot structures using near-field optical technique,” Appl. Phys. Lett. 69, 827–829 (1996).
[Crossref]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, “Tailoring a high-transmission fiber probe for a photon scanning tunneling microscope,” Appl. Phys. Lett. 68, 2612–2614 (1996).
[Crossref]

Electron. Lett. (1)

For example, see M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, M. Nishimura, “Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB,” Electron. Lett. 30, 161–162 (1994).

J. Lightwave Technol. (3)

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13, 1200–1221 (1995).
[Crossref]

S. Mononobe, M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996); Erratum, J. Lightwave Technol. 15, 162 (1997).

R. Uma Maheswari, S. Mononobe, M. Ohtsu, “Control of apex shape of the fiber probe employed in photon scanning tunneling microscope by a multistep etching method,” J. Lightwave Technol. 13, 2308–2313 (1995).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, “Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31, 2282–2287 (1992).
[Crossref]

Opt. Commun. (2)

R. Uma Maheswari, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurones with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, “Imaging of biological samples by a collection-mode photon scanning tunneling microscope,” Opt. Commun. 124, 9–15 (1996).
[Crossref]

Opt. Lett. (2)

Opt. Rev. (1)

R. Uma Maheswari, S. Mononobe, H. Tatsumi, Y. Katayama, M. Ohtsu, “Observation of subcellular structures of neurons by an illumination mode near-field optical microscope under an optical feedback control,” Opt. Rev. 3, 463–467 (1996).
[Crossref]

Scanning (1)

T. Pangaribuan, S. Jiang, M. Ohtsu, “Highly controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
[Crossref]

Science (1)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[Crossref] [PubMed]

Thin Solid Films (1)

For example, see C.-C. Yang, J. Y. Josefowicz, L. Alexandru, “Deposition of ultrathin films by a withdrawal method,” Thin Solid Films 74, 117–127 (1980).

Other (5)

The aperture diameter is as in Ref. 20.

In this measurement, actually an objective lens of N.A. 0.4 was used, and for comparison a value of a transmission coefficient has been corrected to a lens of N.A. 1.

D. W. Pohl, D. Courjon, eds., Near Field Optics, Vol. 242 of NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1993).

H. Hori, “Quantum optical picture of photon STM and proposal of single atom manipulation,” in Ref. 1, pp. 105–114.

In the collection mode NOM, the sample is illuminated under total internal reflection, a nanometric probe tip is used as a scatterer of the evanescent field over the sample, and the scattered field is detected.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagrams of a probe with protrusion: θ1, d, d F , and t M represent the cone angle, the apex diameter, the foot diameter, and the thickness of the metal film, respectively. (b) Schematic illustration of the selective resin-coating method with (I) the coating metal, (II) the resin coating performed by dipping the film in the resin solution and pulling up with the withdrawal speed V D in the air, (III) etching in the solution, and (IV) removal of resin by dipping the film into a solvent. The shoulder-shaped sharpened fiber has the flat cladding end with a diameter D and sharpened core with a cone angle of θ1; r 1, h SC , h R , and d F are the core radius, the height of the sharpened core, the resin height, and the protrusion foot diameter, respectively.

Fig. 2
Fig. 2

Scanning electron micrographs of (a) the shoulder-shaped fiber probe obtained by the SRC method, (b) its protruding tip. The probe has a diameter D = 45 µm of the cladding end, a foot diameter d F = 30 nm, a cone angle θ1 = 20°, and an apex diameter d = 10 nm.

Fig. 3
Fig. 3

Dependence of the foot diameter d F (a) on the cladding diameter D for a withdrawal speed V D of 5 cm/s and (b) on the withdrawal speed V D at D = 40 µm.

Fig. 4
Fig. 4

Image of salmonella filaments obtained with the collection mode of a NOM employing the protruded tip as shown in Fig. 3(b). Here the sample is composed of straight-type flagellar filaments of salmonella with a diameter of 25 nm. The scan area is 2.2 µm × 2.2 µm. The incident light illuminating the sample is s-polarized. The minimum width of the filament as indicated by the arrow heads is around 50 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

hSC=r1/tanθ1/2.
dF=2hSC-hRtanθ1/2  hR<hSC.

Metrics