Abstract

We developed a new method for lidar calibration using lidar horizontal measurements of the atmosphere, combined with measurements of the aerosol refractive index and its size distribution.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Herman, S. R. Browning, “The effect of aerosol on the earth-atmosphere albedo,” J. Atmos. Sci. 32, 1430–1445 (1975).
    [CrossRef]
  2. N. Braslau, J. V. Dave, “Effects of aerosols on the transfer of solar energy through realistic atmospheres. Part I: Non-absorbing aerosols,” J. Appl. Meteorol. 12, 610–615 (1973).
  3. G. Yamamoto, M. Tanaka, “Increase of global albedo due to air pollution,” J. Atmos. Sci. 29, 1405–1412 (1972).
    [CrossRef]
  4. J. M. Mitchell, “The effect of atmospheric aerosols on climate with special reference to temperature near the Earth’s surface,” J. Appl. Meteorol. 10, 707–714 (1971).
    [CrossRef]
  5. S. I. Rasool, S. H. Schneider, “Atmospheric carbon dioxide and aerosols: effects of large increases on global climate,” Science 173, 138–141 (1971).
    [CrossRef] [PubMed]
  6. F. F. Hall, H. Y. Ageno, “Absolute calibration of laser system for atmospheric probing,” Appl. Opt. 9, 1820–1824 (1970).
    [CrossRef] [PubMed]
  7. P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation for lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979).
    [PubMed]
  8. C.-I. Lin, M. Baker, R. J. Charlson, “Absorption coefficient of atmospheric aerosol: a method for measurement,” Appl. Opt. 12, 1356–1363 (1973).
    [CrossRef] [PubMed]
  9. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  10. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  11. S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in southern hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
    [CrossRef]

1993 (1)

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in southern hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

1981 (1)

1979 (1)

1975 (1)

B. M. Herman, S. R. Browning, “The effect of aerosol on the earth-atmosphere albedo,” J. Atmos. Sci. 32, 1430–1445 (1975).
[CrossRef]

1973 (2)

N. Braslau, J. V. Dave, “Effects of aerosols on the transfer of solar energy through realistic atmospheres. Part I: Non-absorbing aerosols,” J. Appl. Meteorol. 12, 610–615 (1973).

C.-I. Lin, M. Baker, R. J. Charlson, “Absorption coefficient of atmospheric aerosol: a method for measurement,” Appl. Opt. 12, 1356–1363 (1973).
[CrossRef] [PubMed]

1972 (1)

G. Yamamoto, M. Tanaka, “Increase of global albedo due to air pollution,” J. Atmos. Sci. 29, 1405–1412 (1972).
[CrossRef]

1971 (2)

J. M. Mitchell, “The effect of atmospheric aerosols on climate with special reference to temperature near the Earth’s surface,” J. Appl. Meteorol. 10, 707–714 (1971).
[CrossRef]

S. I. Rasool, S. H. Schneider, “Atmospheric carbon dioxide and aerosols: effects of large increases on global climate,” Science 173, 138–141 (1971).
[CrossRef] [PubMed]

1970 (1)

Ageno, H. Y.

Baker, M.

Braslau, N.

N. Braslau, J. V. Dave, “Effects of aerosols on the transfer of solar energy through realistic atmospheres. Part I: Non-absorbing aerosols,” J. Appl. Meteorol. 12, 610–615 (1973).

Browning, S. R.

B. M. Herman, S. R. Browning, “The effect of aerosol on the earth-atmosphere albedo,” J. Atmos. Sci. 32, 1430–1445 (1975).
[CrossRef]

Charlson, R. J.

Cutten, D. R.

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in southern hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

Dave, J. V.

N. Braslau, J. V. Dave, “Effects of aerosols on the transfer of solar energy through realistic atmospheres. Part I: Non-absorbing aerosols,” J. Appl. Meteorol. 12, 610–615 (1973).

Davies, J. E.

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in southern hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

Hall, F. F.

Herman, B. M.

B. M. Herman, S. R. Browning, “The effect of aerosol on the earth-atmosphere albedo,” J. Atmos. Sci. 32, 1430–1445 (1975).
[CrossRef]

Klett, J. D.

Lin, C.-I.

Lynch, M. J.

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in southern hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

McCormick, M. P.

Mitchell, J. M.

J. M. Mitchell, “The effect of atmospheric aerosols on climate with special reference to temperature near the Earth’s surface,” J. Appl. Meteorol. 10, 707–714 (1971).
[CrossRef]

Rasool, S. I.

S. I. Rasool, S. H. Schneider, “Atmospheric carbon dioxide and aerosols: effects of large increases on global climate,” Science 173, 138–141 (1971).
[CrossRef] [PubMed]

Russell, P. B.

Schneider, S. H.

S. I. Rasool, S. H. Schneider, “Atmospheric carbon dioxide and aerosols: effects of large increases on global climate,” Science 173, 138–141 (1971).
[CrossRef] [PubMed]

Swissler, T. J.

Tanaka, M.

G. Yamamoto, M. Tanaka, “Increase of global albedo due to air pollution,” J. Atmos. Sci. 29, 1405–1412 (1972).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Yamamoto, G.

G. Yamamoto, M. Tanaka, “Increase of global albedo due to air pollution,” J. Atmos. Sci. 29, 1405–1412 (1972).
[CrossRef]

Young, S. A.

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in southern hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

Appl. Opt. (4)

Atmos. Environ. (1)

S. A. Young, D. R. Cutten, M. J. Lynch, J. E. Davies, “Lidar-derived variations in the backscatter-to-extinction ratio in southern hemisphere coastal maritime aerosols,” Atmos. Environ. 27A, 1541–1551 (1993).
[CrossRef]

J. Appl. Meteorol. (2)

N. Braslau, J. V. Dave, “Effects of aerosols on the transfer of solar energy through realistic atmospheres. Part I: Non-absorbing aerosols,” J. Appl. Meteorol. 12, 610–615 (1973).

J. M. Mitchell, “The effect of atmospheric aerosols on climate with special reference to temperature near the Earth’s surface,” J. Appl. Meteorol. 10, 707–714 (1971).
[CrossRef]

J. Atmos. Sci. (2)

G. Yamamoto, M. Tanaka, “Increase of global albedo due to air pollution,” J. Atmos. Sci. 29, 1405–1412 (1972).
[CrossRef]

B. M. Herman, S. R. Browning, “The effect of aerosol on the earth-atmosphere albedo,” J. Atmos. Sci. 32, 1430–1445 (1975).
[CrossRef]

Science (1)

S. I. Rasool, S. H. Schneider, “Atmospheric carbon dioxide and aerosols: effects of large increases on global climate,” Science 173, 138–141 (1971).
[CrossRef] [PubMed]

Other (1)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Three-dimensional plots of relative error R versus relative errors of both aerosol number density and the imaginary part of the refractive index. Different relative errors of the real part of the refractive index are (a) -5%, (b) 0, (c) 5%.

Fig. 2
Fig. 2

Simulated lidar range-corrected return and least-squares straight-line fit.

Fig. 3
Fig. 3

Aerosol particle size distribution with its refractive index m = 1.50–0.044 i.

Fig. 4
Fig. 4

Lidar range-corrected return and least-squares straight-line fit.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Pr=CErβrexp-2 0r σrdr/r2,
Sr=lnr2Pr=ln CEβr-2 0r σrdr.
dSr/dr=dβr/βrdr-2σr.
σr=-dSr/2dr=Sr1-Sr2/2r2-r1.
Sr=ln CEβ-2σr.
σ=-A/2
C=R expB/E.
R=σ/β=baπr2nrQextm, r, λ×dr/baπr2nrQbackm, r, λdr=iΔN/ΔlgribarQextm, r, λ×dr/iΔN/ΔlgribarQbackm, r, λdr,
Sr=ln CEσ/R-2σr+RND-0.5.

Metrics