Abstract

Bragg gratings used as input–output couplers in polymeric waveguides have been demonstrated at infrared wavelengths. These Bragg grating couplers were holographically formed volume phase gratings with a near-45° fringe slant angle embedded directly into a waveguide layer. A photopolymer was used for both producing a planar waveguide and constructing the embedded Bragg grating coupler. A coupling efficiency of 23% for input and 5% for output has been achieved at 850 nm. The output-coupling beam profiles are also discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Driemeier, “Bragg-effect grating couplers integrated in multicomponent polymeric waveguides,” Opt. Lett. 15, 725–727 (1990).
    [CrossRef] [PubMed]
  2. K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
    [CrossRef]
  3. F. Lin, E. M. Strzelecki, C. Nguyen, T. Jannson, “Highly parallel single-mode multiplanar holographic interconnects,” Opt. Lett. 16, 183–185 (1991).
    [PubMed]
  4. F. Lin, E. M. Strzelecki, T. Jannson, “Optical multiplanar VLSI interconnects based on multiplexed waveguide holograms,” Appl. Opt. 29, 1126–1133 (1990).
    [CrossRef] [PubMed]
  5. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  6. R. P. Kenan, “Theory of crossed-beam diffraction gratings,” IEEE J. Quantum Electron. QE-14, 924–930 (1978).
    [CrossRef]
  7. L. Solymar, “A general two-dimensional theory for volume holograms,” Appl. Phys. Lett. 31, 820–822 (1977).
    [CrossRef]
  8. L. Solymar, M. P. Jordan, “Finite beams in large volume holograms.” Microwaves, Opt. Acoust. 1, 89–92 (1977).
    [CrossRef]
  9. K. K. Svidzinskii, “Theory of Bragg diffraction by limited-aperture gratings at planar optical waveguide,” Sov. J. Quantum Electron. 10, 1103–1109 (1980).
    [CrossRef]
  10. K. K. Svidzinskii, “Optical properties of specially shaped waveguide diffraction gratings,” Sov. J. Quantum Electron. 11, 1323–1327 (1981).
    [CrossRef]
  11. P. J. Russell, L. Solymar, “The properties of holographic overlap gratings,” Opt. Acta 26, 329–347 (1979).
    [CrossRef]
  12. M. L. Jones, R. P. Kenan, C. M. Verber, “Rectangular characteristic gratings for waveguide input and output coupling,” Appl. Opt. 34, 4149–4158 (1995).
    [CrossRef] [PubMed]
  13. W. Driemeier, “Coupled-wave analysis of the Bragg effect waveguide coupler,” J. Modern Opt. 38, 363–377 (1991).
    [CrossRef]
  14. W. Y. Wang, T. J. DiLaura, “Bragg effect waveguide coupler analysis,” Appl. Opt. 16, 3230–3236 (1977).
    [CrossRef] [PubMed]
  15. A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in Dupont’s new photopolymer materials,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
    [CrossRef]

1995

1991

W. Driemeier, “Coupled-wave analysis of the Bragg effect waveguide coupler,” J. Modern Opt. 38, 363–377 (1991).
[CrossRef]

F. Lin, E. M. Strzelecki, C. Nguyen, T. Jannson, “Highly parallel single-mode multiplanar holographic interconnects,” Opt. Lett. 16, 183–185 (1991).
[PubMed]

1990

1989

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

1981

K. K. Svidzinskii, “Optical properties of specially shaped waveguide diffraction gratings,” Sov. J. Quantum Electron. 11, 1323–1327 (1981).
[CrossRef]

1980

K. K. Svidzinskii, “Theory of Bragg diffraction by limited-aperture gratings at planar optical waveguide,” Sov. J. Quantum Electron. 10, 1103–1109 (1980).
[CrossRef]

1979

P. J. Russell, L. Solymar, “The properties of holographic overlap gratings,” Opt. Acta 26, 329–347 (1979).
[CrossRef]

1978

R. P. Kenan, “Theory of crossed-beam diffraction gratings,” IEEE J. Quantum Electron. QE-14, 924–930 (1978).
[CrossRef]

1977

L. Solymar, “A general two-dimensional theory for volume holograms,” Appl. Phys. Lett. 31, 820–822 (1977).
[CrossRef]

L. Solymar, M. P. Jordan, “Finite beams in large volume holograms.” Microwaves, Opt. Acoust. 1, 89–92 (1977).
[CrossRef]

W. Y. Wang, T. J. DiLaura, “Bragg effect waveguide coupler analysis,” Appl. Opt. 16, 3230–3236 (1977).
[CrossRef] [PubMed]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

DiLaura, T. J.

Driemeier, W.

W. Driemeier, “Coupled-wave analysis of the Bragg effect waveguide coupler,” J. Modern Opt. 38, 363–377 (1991).
[CrossRef]

W. Driemeier, “Bragg-effect grating couplers integrated in multicomponent polymeric waveguides,” Opt. Lett. 15, 725–727 (1990).
[CrossRef] [PubMed]

Gong, Q.

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Jannson, T.

Jones, M. L.

Jordan, M. P.

L. Solymar, M. P. Jordan, “Finite beams in large volume holograms.” Microwaves, Opt. Acoust. 1, 89–92 (1977).
[CrossRef]

Kenan, R. P.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Lin, F.

Mickish, D. J.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in Dupont’s new photopolymer materials,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
[CrossRef]

Nguyen, C.

Rochford, K. B.

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Russell, P. J.

P. J. Russell, L. Solymar, “The properties of holographic overlap gratings,” Opt. Acta 26, 329–347 (1979).
[CrossRef]

Smothers, W. K.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in Dupont’s new photopolymer materials,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
[CrossRef]

Solymar, L.

P. J. Russell, L. Solymar, “The properties of holographic overlap gratings,” Opt. Acta 26, 329–347 (1979).
[CrossRef]

L. Solymar, “A general two-dimensional theory for volume holograms,” Appl. Phys. Lett. 31, 820–822 (1977).
[CrossRef]

L. Solymar, M. P. Jordan, “Finite beams in large volume holograms.” Microwaves, Opt. Acoust. 1, 89–92 (1977).
[CrossRef]

Stegeman, G. I.

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Strzelecki, E. M.

Svidzinskii, K. K.

K. K. Svidzinskii, “Optical properties of specially shaped waveguide diffraction gratings,” Sov. J. Quantum Electron. 11, 1323–1327 (1981).
[CrossRef]

K. K. Svidzinskii, “Theory of Bragg diffraction by limited-aperture gratings at planar optical waveguide,” Sov. J. Quantum Electron. 10, 1103–1109 (1980).
[CrossRef]

Trout, T. J.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in Dupont’s new photopolymer materials,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
[CrossRef]

Verber, C. M.

Wang, W. Y.

Weber, A. M.

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in Dupont’s new photopolymer materials,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
[CrossRef]

Zanoni, R.

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Solymar, “A general two-dimensional theory for volume holograms,” Appl. Phys. Lett. 31, 820–822 (1977).
[CrossRef]

K. B. Rochford, R. Zanoni, Q. Gong, G. I. Stegeman, “Fabrication of integrated optical structures in polydiacetylene films by irreversible photoinduced bleaching,” Appl. Phys. Lett. 55, 1161–1163 (1989).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

IEEE J. Quantum Electron.

R. P. Kenan, “Theory of crossed-beam diffraction gratings,” IEEE J. Quantum Electron. QE-14, 924–930 (1978).
[CrossRef]

J. Modern Opt.

W. Driemeier, “Coupled-wave analysis of the Bragg effect waveguide coupler,” J. Modern Opt. 38, 363–377 (1991).
[CrossRef]

Microwaves, Opt. Acoust.

L. Solymar, M. P. Jordan, “Finite beams in large volume holograms.” Microwaves, Opt. Acoust. 1, 89–92 (1977).
[CrossRef]

Opt. Acta

P. J. Russell, L. Solymar, “The properties of holographic overlap gratings,” Opt. Acta 26, 329–347 (1979).
[CrossRef]

Opt. Lett.

Sov. J. Quantum Electron.

K. K. Svidzinskii, “Theory of Bragg diffraction by limited-aperture gratings at planar optical waveguide,” Sov. J. Quantum Electron. 10, 1103–1109 (1980).
[CrossRef]

K. K. Svidzinskii, “Optical properties of specially shaped waveguide diffraction gratings,” Sov. J. Quantum Electron. 11, 1323–1327 (1981).
[CrossRef]

Other

A. M. Weber, W. K. Smothers, T. J. Trout, D. J. Mickish, “Hologram recording in Dupont’s new photopolymer materials,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1212, 30–39 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic configuration of a volume grating input coupler. A free-space input beam is diffracted to a waveguide mode caused by the Bragg effect of a slanted volume phase grating.

Fig. 2
Fig. 2

Configuration of a Bragg grating input coupler. The grating fringes project a 45° angle with respect to the surface normal of the grating or the x axis. The grating has a two-dimensional structure with a width of w and a thickness of d.

Fig. 3
Fig. 3

Unslanted grating used to determine the wavelength response of material Δn, showing the (a) grating writing geometry, in which the writing beams had a 15° free-space incident angle at 514 nm, (b) grating reading geometry, in which the reading beam had various incident angles θB to match the Bragg condition while different wavelengths were used.

Fig. 4
Fig. 4

Vector diagrams for reading and writing holographic Bragg gratings, showing the (a) reading geometry, (b) writing geometry.

Fig. 5
Fig. 5

Diagram of the hologram writing geometry with the testing stack interposed between two right-angle prisms using index-matching fluid. The writing wavelength was 514 nm. The hologram formation was monitored with a He–Ne laser.

Fig. 6
Fig. 6

Time response of the hologram formation with HRF-600, showing probe relative intensity as a function of exposure time.

Fig. 7
Fig. 7

Setup for evaluating the modal structure of the multimode polymer waveguide.

Fig. 8
Fig. 8

Setup for testing the input coupling from a surface-normal incident free-space beam to a guided mode.

Fig. 9
Fig. 9

Setup for testing the output coupling from a guided mode to a free-space beam emerging normal to the waveguide surface. The tunable Ti:sapphire laser helped the incident waveguide mode to match the Bragg condition by changing the wavelength.

Fig. 10
Fig. 10

Spatial distribution of the light intensity on the output plane.

Fig. 11
Fig. 11

Angular distribution of the output beam intensity.

Tables (1)

Tables Icon

Table 1 Holographic Method Results

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δn=λ cos θBπdsin-1η,
K=kd-ki,
Λ=λr2n sin 45°.
θ=sin-1λω2nΛ,
θc=cos-1ncnω,
Δθω=sin-1nω cos2ϕ-θc-sin-1nω cos2ϕ+θc,

Metrics