Abstract

We demonstrate the efficient generation of first Stokes Raman radiation using a Brillouin resonator coupled with a Raman half-resonator. A Raman laser at the eye-safe wavelength of 1.575 µm in high-pressure CH4 gas was generated from a passively Q-switched Nd:YAP laser. Raman conversion efficiencies of as much as 55% were obtained at a pressure of 800 psi.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Parazzoli, W. W. Buchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. 24, 872–880 (1988).
    [CrossRef]
  2. D. C. Hanna, D. J. Pointer, “A high power, short pulse stimulated Raman source at 1.54 µm,” Opt. Commun. 60, 187–190 (1986).
    [CrossRef]
  3. D. G. Bruns, H. W. Bruesselbach, H. D. Stovall, D. A. Rockwell, “Scalable visible Nd:YAG pumped Raman laser source,” IEEE J. Quantum Electron. QE-18, 1246–1252 (1982).
    [CrossRef]
  4. Th. Lasser, H. Gross, W. Ulrich, P. Greve, H. J. Niederwald, “Efficient first Stokes generation using a Raman oscillator.” in High Power Lasers and Laser Machining Technology, M. Gaillard, A. Quenzer, eds., Proc. SPIE1132, 36–41 (1989).
  5. I. D. Carr, D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
    [CrossRef]
  6. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996, Chap. 2, p. 31.
  7. H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
    [CrossRef]
  8. P. P. Pashnin, E. J. Shklovsky, “Solid-state lasers with stimulated-Brillouin-scattering mirrors operating in the repetitive-pulse mode,” J. Opt. Soc. Am. B 5, 1957–1961 (1988).
    [CrossRef]
  9. H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
    [CrossRef]

1995 (1)

H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
[CrossRef]

1991 (1)

H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
[CrossRef]

1988 (2)

P. P. Pashnin, E. J. Shklovsky, “Solid-state lasers with stimulated-Brillouin-scattering mirrors operating in the repetitive-pulse mode,” J. Opt. Soc. Am. B 5, 1957–1961 (1988).
[CrossRef]

C. G. Parazzoli, W. W. Buchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. 24, 872–880 (1988).
[CrossRef]

1986 (1)

D. C. Hanna, D. J. Pointer, “A high power, short pulse stimulated Raman source at 1.54 µm,” Opt. Commun. 60, 187–190 (1986).
[CrossRef]

1985 (1)

I. D. Carr, D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
[CrossRef]

1982 (1)

D. G. Bruns, H. W. Bruesselbach, H. D. Stovall, D. A. Rockwell, “Scalable visible Nd:YAG pumped Raman laser source,” IEEE J. Quantum Electron. QE-18, 1246–1252 (1982).
[CrossRef]

Bruesselbach, H. W.

D. G. Bruns, H. W. Bruesselbach, H. D. Stovall, D. A. Rockwell, “Scalable visible Nd:YAG pumped Raman laser source,” IEEE J. Quantum Electron. QE-18, 1246–1252 (1982).
[CrossRef]

Bruns, D. G.

D. G. Bruns, H. W. Bruesselbach, H. D. Stovall, D. A. Rockwell, “Scalable visible Nd:YAG pumped Raman laser source,” IEEE J. Quantum Electron. QE-18, 1246–1252 (1982).
[CrossRef]

Buchman, W. W.

C. G. Parazzoli, W. W. Buchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. 24, 872–880 (1988).
[CrossRef]

Carr, I. D.

I. D. Carr, D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
[CrossRef]

Eichler, H. J.

H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
[CrossRef]

Greve, P.

Th. Lasser, H. Gross, W. Ulrich, P. Greve, H. J. Niederwald, “Efficient first Stokes generation using a Raman oscillator.” in High Power Lasers and Laser Machining Technology, M. Gaillard, A. Quenzer, eds., Proc. SPIE1132, 36–41 (1989).

Gross, H.

Th. Lasser, H. Gross, W. Ulrich, P. Greve, H. J. Niederwald, “Efficient first Stokes generation using a Raman oscillator.” in High Power Lasers and Laser Machining Technology, M. Gaillard, A. Quenzer, eds., Proc. SPIE1132, 36–41 (1989).

Haase, A.

H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
[CrossRef]

Hanna, D. C.

D. C. Hanna, D. J. Pointer, “A high power, short pulse stimulated Raman source at 1.54 µm,” Opt. Commun. 60, 187–190 (1986).
[CrossRef]

I. D. Carr, D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
[CrossRef]

Huang, C.-H.

H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996, Chap. 2, p. 31.

Lasser, Th.

Th. Lasser, H. Gross, W. Ulrich, P. Greve, H. J. Niederwald, “Efficient first Stokes generation using a Raman oscillator.” in High Power Lasers and Laser Machining Technology, M. Gaillard, A. Quenzer, eds., Proc. SPIE1132, 36–41 (1989).

Menzel, R.

H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
[CrossRef]

Niederwald, H. J.

Th. Lasser, H. Gross, W. Ulrich, P. Greve, H. J. Niederwald, “Efficient first Stokes generation using a Raman oscillator.” in High Power Lasers and Laser Machining Technology, M. Gaillard, A. Quenzer, eds., Proc. SPIE1132, 36–41 (1989).

Parazzoli, C. G.

C. G. Parazzoli, W. W. Buchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. 24, 872–880 (1988).
[CrossRef]

Pashnin, P. P.

Pointer, D. J.

D. C. Hanna, D. J. Pointer, “A high power, short pulse stimulated Raman source at 1.54 µm,” Opt. Commun. 60, 187–190 (1986).
[CrossRef]

Rockwell, D. A.

D. G. Bruns, H. W. Bruesselbach, H. D. Stovall, D. A. Rockwell, “Scalable visible Nd:YAG pumped Raman laser source,” IEEE J. Quantum Electron. QE-18, 1246–1252 (1982).
[CrossRef]

Shen, H.-Y.

H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
[CrossRef]

Shklovsky, E. J.

Stovall, H. D.

D. G. Bruns, H. W. Bruesselbach, H. D. Stovall, D. A. Rockwell, “Scalable visible Nd:YAG pumped Raman laser source,” IEEE J. Quantum Electron. QE-18, 1246–1252 (1982).
[CrossRef]

Stultz, R. D.

C. G. Parazzoli, W. W. Buchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. 24, 872–880 (1988).
[CrossRef]

Ulrich, W.

Th. Lasser, H. Gross, W. Ulrich, P. Greve, H. J. Niederwald, “Efficient first Stokes generation using a Raman oscillator.” in High Power Lasers and Laser Machining Technology, M. Gaillard, A. Quenzer, eds., Proc. SPIE1132, 36–41 (1989).

Ye, Q. J.

H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
[CrossRef]

Yu, G. F.

H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
[CrossRef]

Zeng, R. R.

H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
[CrossRef]

Zeng, Z.-D.

H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
[CrossRef]

Zhang, W. J.

H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
[CrossRef]

Zhou, Y.-P.

H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
[CrossRef]

Appl. Phys. B (1)

I. D. Carr, D. C. Hanna, “Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering,” Appl. Phys. B 36, 83–92 (1985).
[CrossRef]

IEEE J. Quantum Electron. (4)

H.-Y. Shen, R. R. Zeng, Y.-P. Zhou, G. F. Yu, C.-H. Huang, Z.-D. Zeng, W. J. Zhang, Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991).
[CrossRef]

H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
[CrossRef]

C. G. Parazzoli, W. W. Buchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. 24, 872–880 (1988).
[CrossRef]

D. G. Bruns, H. W. Bruesselbach, H. D. Stovall, D. A. Rockwell, “Scalable visible Nd:YAG pumped Raman laser source,” IEEE J. Quantum Electron. QE-18, 1246–1252 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. C. Hanna, D. J. Pointer, “A high power, short pulse stimulated Raman source at 1.54 µm,” Opt. Commun. 60, 187–190 (1986).
[CrossRef]

Other (2)

Th. Lasser, H. Gross, W. Ulrich, P. Greve, H. J. Niederwald, “Efficient first Stokes generation using a Raman oscillator.” in High Power Lasers and Laser Machining Technology, M. Gaillard, A. Quenzer, eds., Proc. SPIE1132, 36–41 (1989).

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996, Chap. 2, p. 31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement of the Raman oscillator: R, resonator mirror; Q, Q-switcher; L1, meniscus focusing lens (case 1); L2, collimating lens. Inset: plano–convex focusing lens (case 2); δf, shift of focus; S1, refracting surface of focusing lens; S2, reflecting surface of focusing lens.

Fig. 2
Fig. 2

Experimental setup for the measurement of the output characteristics of the Raman oscillator: BS, beam splitter; F1, F2, F3, color filters; M, mirror; P, prism; L, lens (f = 100 cm); D1, D2, photodetectors.

Fig. 3
Fig. 3

Output Raman energy (solid curve) and residual fundamental energy (dotted curve) as a function of the CH4 gas pressure with a meniscus focusing lens.

Fig. 4
Fig. 4

Pulse shapes for Raman (dotted curve) and residual fundamental (solid curve) waves at a gas pressure of 800 psi with a meniscus focusing lens.

Metrics