Abstract

Long-path differential optical absorption spectroscopy (DOAS) has become an increasingly important method for determination of the concentration of tropospheric trace gases (e.g., O3, NO2, BrO, ClO). The use of photodiode array (PDA) detectors enhances long-path DOAS systems considerably owing to PDA’s higher sensitivity resulting from the multiplex advantage. The detection limits of these systems are expected to be 1 order of magnitude lower than systems of similar optical setup with scanning detectors. When the scanning detector is simply replaced by a PDA, unwanted spectral structures of as much as 8 × 10-3 appear. The size of these randomly changing structures exceeds the photon noise level by 2–3 orders of magnitude thus severely limiting the sensitivity. We show that an angular dependence of the response of the PDA causes this structure in combination with unavoidable changes in the illumination. A quartz-fiber mode mixer, which makes the illumination of the spectrograph–detector system nearly independent of the angular intensity distribution of the measured light, was developed and tested. This new device reduces the unwanted structures in laboratory and field experiments by a factor of 10. The detection limits of long-path DOAS instruments with PDA detectors are improved by the same amount and are thus lower than those of currently used systems with scanning detectors. At the same time a much shorter measurement time (by ∼1 order of magnitude) becomes possible.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Perner, D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, A. Volz, “OH-radicals in the lower troposphere,” Geophys. Res. Lett. 3, 466–468 (1976).
    [CrossRef]
  2. D. Perner, U. Platt, “Detection of nitrous acid in the atmosphere by differential optical absorption,” Geophys. Res. Lett. 6, 917–920 (1979).
    [CrossRef]
  3. U. Platt, D. Perner, G. W. Harris, A. M. Winer, J. N. Pitts, “Detection of NO3 in the polluted troposphere by differential optical absorption,” Geophys. Res. Lett. 7, 89–92 (1980).
    [CrossRef]
  4. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Chemical Analysis Series (Wiley, New York, 1994), pp. 27–85.
  5. M. Hausmann, U. Platt, “Spectroscopic measurements of bromine oxide and ozone in the high Arctic during polar sunrise experiment 1992,” J. Geophys. Res. 99, 25399–25413 (1994).
    [CrossRef]
  6. W. Unold, H. Lorenzen-Schmidt, E. Lehrer, J. Stutz, T. Trost, U. Platt, “Arctic Boundary Layer Halogen Oxides during an Ozone Depletion Event in Ny Alesund, Spitsbergen (78 °N),” in preparation by staff at Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany.
  7. R. W. Sanders, S. Solomon, M. A. Caroll, A. L. Schmeltekopf, “Ground-Based Measurements of O3, NO2, OClO and BrO during the 1987 Antarctic Ozone Depletion Event,” in Ozone in the Atmosphere; Proceedings of the Quadrennial Ozone Symposium 1988R. D. Bojkov, P. Fabian, eds. (Deepak Publishing, Hampton, Va., 1989), pp. 65–70.
  8. U. Platt, D. Perner, “Measurements of atmospheric trace gases by long path differential UV/visible absorption spectroscopy,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradien, eds. (Springer, New York, 1984), vol. 39, pp. 95–105.
  9. J. M. C. Plane, C-F. Nien, “Differential Optical Absorption Spectrometer for Measuring Atmospheric Trace Gases,” Rev. Sci. Instrum. 63, 1867–1876 (1992).
    [CrossRef]
  10. J. Stutz, U. Platt, “Numerical analysis of DOAS spectra with linear and nonlinear least squares fits,” Proceedings of EUROTRAC Symposium 94, P. M. Borell et al. eds. (1994), p.p. 930–934.
  11. J. Stutz, U. Platt, “Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods,” Appl. Opt. 35, 6041–6053 (1996).
    [CrossRef] [PubMed]
  12. U. Platt, D. Perner, “Ein Instrument zur spektroskopischen Spurenstoffmessung in der Atmosphäre,” Fresenius Z. Anal. Chem. 317, 309–313 (1984).
    [CrossRef]
  13. H. Axelson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of The Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.
  14. P. V. Johnston, R. L. McKenzie, “Long-Path Absorption Measurements of Tropospheric NO2 in Rural New Zealand,” Geophys. Res. Lett. 11, 69–72 (1984).
    [CrossRef]
  15. J. Stutz, U. Platt, “Problems in using diode arrays for open path DOAS measurements of atmospheric species,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 329–340 (1993).
  16. P. Knoll, R. Singer, W. Kiefer, “Improving spectroscopic techniques by a scanning multichannel technique,” Appl. Spectrosc. 44, 776–782 (1990).
    [CrossRef]
  17. T. Brauers, M. Hausmann, U. Brandenburger, H.-P. Dorn, “Improvement of Differential Optical Absorption Spectroscopy using Multi-Channel-Scanning-Technique,” Appl. Opt. 21, 4472–4479 (1995).
    [CrossRef]
  18. RL1024SR Data Sheet, EG&G Reticon, Sunnyvale, Calif. (1992).
  19. G. Mount, R. Sanders, J. Brault, “Interference effects in reticon photodiode array detectors,” Appl. Opt. 31, 8518–8528 (1992).
    [CrossRef]
  20. J. Stutz, “Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller Optischer Absorptionsspektroskopie: Eine neue Generation von Geräten und Algorithmen,” Ph.D. dissertation (University Heidelberg, Heidelberg, Germany, 1996).
  21. T. Gomer, T. Brauers, F. Heintz, J. Stutz, U. Platt, mfc User Manual, Version 1.98, (University Heidelberg, Heidelberg, Germany, 1995).
  22. J. Reader, “Optimizing Czerny–Turner spectrographs: a comparison between analytic theory and ray tracing,” J. Opt. Soc. Am. 59, 1189–1196 (1969).
    [CrossRef]
  23. D. Perner, MPI Luftchemie, Mainz, Germany (personal communication, 1993).
  24. H. P. Dorn, U. Brandenburger, T. Brauers, M. Hausmann, “A new in-situ long path absorption instrument for the measurements of tropospheric OH radicals,” J. Atmos. Sci. 52, 3373–3381 (1995).
    [CrossRef]
  25. D. Marcuse, “Coupled Mode Theory of Round Optical Fibers,” Bell Syst. Tech. J. 52, 817–842 (1973).
    [CrossRef]
  26. M. Imai, T. Asakura, “Evaluation of the mode scrambler characteristics in terms of speckle contrast,” Opt. Commun. 30, 299–303 (1979).
    [CrossRef]
  27. J. Bösenberg, D. Brassington, P. C. Simon, “Instrument Development for Atmospheric Research and Monitoring,” European Union publication (to be published).

1996 (1)

1995 (2)

H. P. Dorn, U. Brandenburger, T. Brauers, M. Hausmann, “A new in-situ long path absorption instrument for the measurements of tropospheric OH radicals,” J. Atmos. Sci. 52, 3373–3381 (1995).
[CrossRef]

T. Brauers, M. Hausmann, U. Brandenburger, H.-P. Dorn, “Improvement of Differential Optical Absorption Spectroscopy using Multi-Channel-Scanning-Technique,” Appl. Opt. 21, 4472–4479 (1995).
[CrossRef]

1994 (1)

M. Hausmann, U. Platt, “Spectroscopic measurements of bromine oxide and ozone in the high Arctic during polar sunrise experiment 1992,” J. Geophys. Res. 99, 25399–25413 (1994).
[CrossRef]

1992 (2)

J. M. C. Plane, C-F. Nien, “Differential Optical Absorption Spectrometer for Measuring Atmospheric Trace Gases,” Rev. Sci. Instrum. 63, 1867–1876 (1992).
[CrossRef]

G. Mount, R. Sanders, J. Brault, “Interference effects in reticon photodiode array detectors,” Appl. Opt. 31, 8518–8528 (1992).
[CrossRef]

1990 (1)

1984 (2)

U. Platt, D. Perner, “Ein Instrument zur spektroskopischen Spurenstoffmessung in der Atmosphäre,” Fresenius Z. Anal. Chem. 317, 309–313 (1984).
[CrossRef]

P. V. Johnston, R. L. McKenzie, “Long-Path Absorption Measurements of Tropospheric NO2 in Rural New Zealand,” Geophys. Res. Lett. 11, 69–72 (1984).
[CrossRef]

1980 (1)

U. Platt, D. Perner, G. W. Harris, A. M. Winer, J. N. Pitts, “Detection of NO3 in the polluted troposphere by differential optical absorption,” Geophys. Res. Lett. 7, 89–92 (1980).
[CrossRef]

1979 (2)

D. Perner, U. Platt, “Detection of nitrous acid in the atmosphere by differential optical absorption,” Geophys. Res. Lett. 6, 917–920 (1979).
[CrossRef]

M. Imai, T. Asakura, “Evaluation of the mode scrambler characteristics in terms of speckle contrast,” Opt. Commun. 30, 299–303 (1979).
[CrossRef]

1976 (1)

D. Perner, D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, A. Volz, “OH-radicals in the lower troposphere,” Geophys. Res. Lett. 3, 466–468 (1976).
[CrossRef]

1973 (1)

D. Marcuse, “Coupled Mode Theory of Round Optical Fibers,” Bell Syst. Tech. J. 52, 817–842 (1973).
[CrossRef]

1969 (1)

Asakura, T.

M. Imai, T. Asakura, “Evaluation of the mode scrambler characteristics in terms of speckle contrast,” Opt. Commun. 30, 299–303 (1979).
[CrossRef]

Axelson, H.

H. Axelson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of The Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

Bösenberg, J.

J. Bösenberg, D. Brassington, P. C. Simon, “Instrument Development for Atmospheric Research and Monitoring,” European Union publication (to be published).

Brandenburger, U.

H. P. Dorn, U. Brandenburger, T. Brauers, M. Hausmann, “A new in-situ long path absorption instrument for the measurements of tropospheric OH radicals,” J. Atmos. Sci. 52, 3373–3381 (1995).
[CrossRef]

T. Brauers, M. Hausmann, U. Brandenburger, H.-P. Dorn, “Improvement of Differential Optical Absorption Spectroscopy using Multi-Channel-Scanning-Technique,” Appl. Opt. 21, 4472–4479 (1995).
[CrossRef]

Brassington, D.

J. Bösenberg, D. Brassington, P. C. Simon, “Instrument Development for Atmospheric Research and Monitoring,” European Union publication (to be published).

Brauers, T.

H. P. Dorn, U. Brandenburger, T. Brauers, M. Hausmann, “A new in-situ long path absorption instrument for the measurements of tropospheric OH radicals,” J. Atmos. Sci. 52, 3373–3381 (1995).
[CrossRef]

T. Brauers, M. Hausmann, U. Brandenburger, H.-P. Dorn, “Improvement of Differential Optical Absorption Spectroscopy using Multi-Channel-Scanning-Technique,” Appl. Opt. 21, 4472–4479 (1995).
[CrossRef]

T. Gomer, T. Brauers, F. Heintz, J. Stutz, U. Platt, mfc User Manual, Version 1.98, (University Heidelberg, Heidelberg, Germany, 1995).

Brault, J.

G. Mount, R. Sanders, J. Brault, “Interference effects in reticon photodiode array detectors,” Appl. Opt. 31, 8518–8528 (1992).
[CrossRef]

Caroll, M. A.

R. W. Sanders, S. Solomon, M. A. Caroll, A. L. Schmeltekopf, “Ground-Based Measurements of O3, NO2, OClO and BrO during the 1987 Antarctic Ozone Depletion Event,” in Ozone in the Atmosphere; Proceedings of the Quadrennial Ozone Symposium 1988R. D. Bojkov, P. Fabian, eds. (Deepak Publishing, Hampton, Va., 1989), pp. 65–70.

Dorn, H. P.

H. P. Dorn, U. Brandenburger, T. Brauers, M. Hausmann, “A new in-situ long path absorption instrument for the measurements of tropospheric OH radicals,” J. Atmos. Sci. 52, 3373–3381 (1995).
[CrossRef]

Dorn, H.-P.

Ehhalt, D. H.

D. Perner, D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, A. Volz, “OH-radicals in the lower troposphere,” Geophys. Res. Lett. 3, 466–468 (1976).
[CrossRef]

Galle, B.

H. Axelson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of The Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

Gomer, T.

T. Gomer, T. Brauers, F. Heintz, J. Stutz, U. Platt, mfc User Manual, Version 1.98, (University Heidelberg, Heidelberg, Germany, 1995).

Gustavsson, K.

H. Axelson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of The Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

Harris, G. W.

U. Platt, D. Perner, G. W. Harris, A. M. Winer, J. N. Pitts, “Detection of NO3 in the polluted troposphere by differential optical absorption,” Geophys. Res. Lett. 7, 89–92 (1980).
[CrossRef]

Hausmann, M.

H. P. Dorn, U. Brandenburger, T. Brauers, M. Hausmann, “A new in-situ long path absorption instrument for the measurements of tropospheric OH radicals,” J. Atmos. Sci. 52, 3373–3381 (1995).
[CrossRef]

T. Brauers, M. Hausmann, U. Brandenburger, H.-P. Dorn, “Improvement of Differential Optical Absorption Spectroscopy using Multi-Channel-Scanning-Technique,” Appl. Opt. 21, 4472–4479 (1995).
[CrossRef]

M. Hausmann, U. Platt, “Spectroscopic measurements of bromine oxide and ozone in the high Arctic during polar sunrise experiment 1992,” J. Geophys. Res. 99, 25399–25413 (1994).
[CrossRef]

Heintz, F.

T. Gomer, T. Brauers, F. Heintz, J. Stutz, U. Platt, mfc User Manual, Version 1.98, (University Heidelberg, Heidelberg, Germany, 1995).

Imai, M.

M. Imai, T. Asakura, “Evaluation of the mode scrambler characteristics in terms of speckle contrast,” Opt. Commun. 30, 299–303 (1979).
[CrossRef]

Johnston, P. V.

P. V. Johnston, R. L. McKenzie, “Long-Path Absorption Measurements of Tropospheric NO2 in Rural New Zealand,” Geophys. Res. Lett. 11, 69–72 (1984).
[CrossRef]

Kiefer, W.

Knoll, P.

Lehrer, E.

W. Unold, H. Lorenzen-Schmidt, E. Lehrer, J. Stutz, T. Trost, U. Platt, “Arctic Boundary Layer Halogen Oxides during an Ozone Depletion Event in Ny Alesund, Spitsbergen (78 °N),” in preparation by staff at Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany.

Lorenzen-Schmidt, H.

W. Unold, H. Lorenzen-Schmidt, E. Lehrer, J. Stutz, T. Trost, U. Platt, “Arctic Boundary Layer Halogen Oxides during an Ozone Depletion Event in Ny Alesund, Spitsbergen (78 °N),” in preparation by staff at Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany.

Marcuse, D.

D. Marcuse, “Coupled Mode Theory of Round Optical Fibers,” Bell Syst. Tech. J. 52, 817–842 (1973).
[CrossRef]

McKenzie, R. L.

P. V. Johnston, R. L. McKenzie, “Long-Path Absorption Measurements of Tropospheric NO2 in Rural New Zealand,” Geophys. Res. Lett. 11, 69–72 (1984).
[CrossRef]

Mount, G.

G. Mount, R. Sanders, J. Brault, “Interference effects in reticon photodiode array detectors,” Appl. Opt. 31, 8518–8528 (1992).
[CrossRef]

Nien, C-F.

J. M. C. Plane, C-F. Nien, “Differential Optical Absorption Spectrometer for Measuring Atmospheric Trace Gases,” Rev. Sci. Instrum. 63, 1867–1876 (1992).
[CrossRef]

Paetz, H. W.

D. Perner, D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, A. Volz, “OH-radicals in the lower troposphere,” Geophys. Res. Lett. 3, 466–468 (1976).
[CrossRef]

Perner, D.

U. Platt, D. Perner, “Ein Instrument zur spektroskopischen Spurenstoffmessung in der Atmosphäre,” Fresenius Z. Anal. Chem. 317, 309–313 (1984).
[CrossRef]

U. Platt, D. Perner, G. W. Harris, A. M. Winer, J. N. Pitts, “Detection of NO3 in the polluted troposphere by differential optical absorption,” Geophys. Res. Lett. 7, 89–92 (1980).
[CrossRef]

D. Perner, U. Platt, “Detection of nitrous acid in the atmosphere by differential optical absorption,” Geophys. Res. Lett. 6, 917–920 (1979).
[CrossRef]

D. Perner, D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, A. Volz, “OH-radicals in the lower troposphere,” Geophys. Res. Lett. 3, 466–468 (1976).
[CrossRef]

U. Platt, D. Perner, “Measurements of atmospheric trace gases by long path differential UV/visible absorption spectroscopy,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradien, eds. (Springer, New York, 1984), vol. 39, pp. 95–105.

D. Perner, MPI Luftchemie, Mainz, Germany (personal communication, 1993).

Pitts, J. N.

U. Platt, D. Perner, G. W. Harris, A. M. Winer, J. N. Pitts, “Detection of NO3 in the polluted troposphere by differential optical absorption,” Geophys. Res. Lett. 7, 89–92 (1980).
[CrossRef]

Plane, J. M. C.

J. M. C. Plane, C-F. Nien, “Differential Optical Absorption Spectrometer for Measuring Atmospheric Trace Gases,” Rev. Sci. Instrum. 63, 1867–1876 (1992).
[CrossRef]

Platt, U.

J. Stutz, U. Platt, “Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods,” Appl. Opt. 35, 6041–6053 (1996).
[CrossRef] [PubMed]

M. Hausmann, U. Platt, “Spectroscopic measurements of bromine oxide and ozone in the high Arctic during polar sunrise experiment 1992,” J. Geophys. Res. 99, 25399–25413 (1994).
[CrossRef]

U. Platt, D. Perner, “Ein Instrument zur spektroskopischen Spurenstoffmessung in der Atmosphäre,” Fresenius Z. Anal. Chem. 317, 309–313 (1984).
[CrossRef]

U. Platt, D. Perner, G. W. Harris, A. M. Winer, J. N. Pitts, “Detection of NO3 in the polluted troposphere by differential optical absorption,” Geophys. Res. Lett. 7, 89–92 (1980).
[CrossRef]

D. Perner, U. Platt, “Detection of nitrous acid in the atmosphere by differential optical absorption,” Geophys. Res. Lett. 6, 917–920 (1979).
[CrossRef]

D. Perner, D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, A. Volz, “OH-radicals in the lower troposphere,” Geophys. Res. Lett. 3, 466–468 (1976).
[CrossRef]

J. Stutz, U. Platt, “Numerical analysis of DOAS spectra with linear and nonlinear least squares fits,” Proceedings of EUROTRAC Symposium 94, P. M. Borell et al. eds. (1994), p.p. 930–934.

T. Gomer, T. Brauers, F. Heintz, J. Stutz, U. Platt, mfc User Manual, Version 1.98, (University Heidelberg, Heidelberg, Germany, 1995).

U. Platt, D. Perner, “Measurements of atmospheric trace gases by long path differential UV/visible absorption spectroscopy,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradien, eds. (Springer, New York, 1984), vol. 39, pp. 95–105.

W. Unold, H. Lorenzen-Schmidt, E. Lehrer, J. Stutz, T. Trost, U. Platt, “Arctic Boundary Layer Halogen Oxides during an Ozone Depletion Event in Ny Alesund, Spitsbergen (78 °N),” in preparation by staff at Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany.

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Chemical Analysis Series (Wiley, New York, 1994), pp. 27–85.

J. Stutz, U. Platt, “Problems in using diode arrays for open path DOAS measurements of atmospheric species,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 329–340 (1993).

Ragnarsson, P.

H. Axelson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of The Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

Reader, J.

Roeth, E. P.

D. Perner, D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, A. Volz, “OH-radicals in the lower troposphere,” Geophys. Res. Lett. 3, 466–468 (1976).
[CrossRef]

Rudin, M.

H. Axelson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of The Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

Sanders, R.

G. Mount, R. Sanders, J. Brault, “Interference effects in reticon photodiode array detectors,” Appl. Opt. 31, 8518–8528 (1992).
[CrossRef]

Sanders, R. W.

R. W. Sanders, S. Solomon, M. A. Caroll, A. L. Schmeltekopf, “Ground-Based Measurements of O3, NO2, OClO and BrO during the 1987 Antarctic Ozone Depletion Event,” in Ozone in the Atmosphere; Proceedings of the Quadrennial Ozone Symposium 1988R. D. Bojkov, P. Fabian, eds. (Deepak Publishing, Hampton, Va., 1989), pp. 65–70.

Schmeltekopf, A. L.

R. W. Sanders, S. Solomon, M. A. Caroll, A. L. Schmeltekopf, “Ground-Based Measurements of O3, NO2, OClO and BrO during the 1987 Antarctic Ozone Depletion Event,” in Ozone in the Atmosphere; Proceedings of the Quadrennial Ozone Symposium 1988R. D. Bojkov, P. Fabian, eds. (Deepak Publishing, Hampton, Va., 1989), pp. 65–70.

Simon, P. C.

J. Bösenberg, D. Brassington, P. C. Simon, “Instrument Development for Atmospheric Research and Monitoring,” European Union publication (to be published).

Singer, R.

Solomon, S.

R. W. Sanders, S. Solomon, M. A. Caroll, A. L. Schmeltekopf, “Ground-Based Measurements of O3, NO2, OClO and BrO during the 1987 Antarctic Ozone Depletion Event,” in Ozone in the Atmosphere; Proceedings of the Quadrennial Ozone Symposium 1988R. D. Bojkov, P. Fabian, eds. (Deepak Publishing, Hampton, Va., 1989), pp. 65–70.

Stutz, J.

J. Stutz, U. Platt, “Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods,” Appl. Opt. 35, 6041–6053 (1996).
[CrossRef] [PubMed]

J. Stutz, U. Platt, “Problems in using diode arrays for open path DOAS measurements of atmospheric species,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 329–340 (1993).

J. Stutz, U. Platt, “Numerical analysis of DOAS spectra with linear and nonlinear least squares fits,” Proceedings of EUROTRAC Symposium 94, P. M. Borell et al. eds. (1994), p.p. 930–934.

W. Unold, H. Lorenzen-Schmidt, E. Lehrer, J. Stutz, T. Trost, U. Platt, “Arctic Boundary Layer Halogen Oxides during an Ozone Depletion Event in Ny Alesund, Spitsbergen (78 °N),” in preparation by staff at Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany.

T. Gomer, T. Brauers, F. Heintz, J. Stutz, U. Platt, mfc User Manual, Version 1.98, (University Heidelberg, Heidelberg, Germany, 1995).

J. Stutz, “Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller Optischer Absorptionsspektroskopie: Eine neue Generation von Geräten und Algorithmen,” Ph.D. dissertation (University Heidelberg, Heidelberg, Germany, 1996).

Trost, T.

W. Unold, H. Lorenzen-Schmidt, E. Lehrer, J. Stutz, T. Trost, U. Platt, “Arctic Boundary Layer Halogen Oxides during an Ozone Depletion Event in Ny Alesund, Spitsbergen (78 °N),” in preparation by staff at Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany.

Unold, W.

W. Unold, H. Lorenzen-Schmidt, E. Lehrer, J. Stutz, T. Trost, U. Platt, “Arctic Boundary Layer Halogen Oxides during an Ozone Depletion Event in Ny Alesund, Spitsbergen (78 °N),” in preparation by staff at Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany.

Volz, A.

D. Perner, D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, A. Volz, “OH-radicals in the lower troposphere,” Geophys. Res. Lett. 3, 466–468 (1976).
[CrossRef]

Winer, A. M.

U. Platt, D. Perner, G. W. Harris, A. M. Winer, J. N. Pitts, “Detection of NO3 in the polluted troposphere by differential optical absorption,” Geophys. Res. Lett. 7, 89–92 (1980).
[CrossRef]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Coupled Mode Theory of Round Optical Fibers,” Bell Syst. Tech. J. 52, 817–842 (1973).
[CrossRef]

Fresenius Z. Anal. Chem. (1)

U. Platt, D. Perner, “Ein Instrument zur spektroskopischen Spurenstoffmessung in der Atmosphäre,” Fresenius Z. Anal. Chem. 317, 309–313 (1984).
[CrossRef]

Geophys. Res. Lett. (4)

P. V. Johnston, R. L. McKenzie, “Long-Path Absorption Measurements of Tropospheric NO2 in Rural New Zealand,” Geophys. Res. Lett. 11, 69–72 (1984).
[CrossRef]

D. Perner, D. H. Ehhalt, H. W. Paetz, U. Platt, E. P. Roeth, A. Volz, “OH-radicals in the lower troposphere,” Geophys. Res. Lett. 3, 466–468 (1976).
[CrossRef]

D. Perner, U. Platt, “Detection of nitrous acid in the atmosphere by differential optical absorption,” Geophys. Res. Lett. 6, 917–920 (1979).
[CrossRef]

U. Platt, D. Perner, G. W. Harris, A. M. Winer, J. N. Pitts, “Detection of NO3 in the polluted troposphere by differential optical absorption,” Geophys. Res. Lett. 7, 89–92 (1980).
[CrossRef]

J. Atmos. Sci. (1)

H. P. Dorn, U. Brandenburger, T. Brauers, M. Hausmann, “A new in-situ long path absorption instrument for the measurements of tropospheric OH radicals,” J. Atmos. Sci. 52, 3373–3381 (1995).
[CrossRef]

J. Geophys. Res. (1)

M. Hausmann, U. Platt, “Spectroscopic measurements of bromine oxide and ozone in the high Arctic during polar sunrise experiment 1992,” J. Geophys. Res. 99, 25399–25413 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

M. Imai, T. Asakura, “Evaluation of the mode scrambler characteristics in terms of speckle contrast,” Opt. Commun. 30, 299–303 (1979).
[CrossRef]

Rev. Sci. Instrum. (1)

J. M. C. Plane, C-F. Nien, “Differential Optical Absorption Spectrometer for Measuring Atmospheric Trace Gases,” Rev. Sci. Instrum. 63, 1867–1876 (1992).
[CrossRef]

Other (12)

J. Stutz, U. Platt, “Numerical analysis of DOAS spectra with linear and nonlinear least squares fits,” Proceedings of EUROTRAC Symposium 94, P. M. Borell et al. eds. (1994), p.p. 930–934.

H. Axelson, B. Galle, K. Gustavsson, P. Ragnarsson, M. Rudin, “A transmitting/receiving telescope for DOAS-measurements using retroreflector technique,” in Optical Remote Sensing of The Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 641–644.

J. Stutz, U. Platt, “Problems in using diode arrays for open path DOAS measurements of atmospheric species,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff, U. Platt, eds., Proc. SPIE1715, 329–340 (1993).

RL1024SR Data Sheet, EG&G Reticon, Sunnyvale, Calif. (1992).

W. Unold, H. Lorenzen-Schmidt, E. Lehrer, J. Stutz, T. Trost, U. Platt, “Arctic Boundary Layer Halogen Oxides during an Ozone Depletion Event in Ny Alesund, Spitsbergen (78 °N),” in preparation by staff at Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany.

R. W. Sanders, S. Solomon, M. A. Caroll, A. L. Schmeltekopf, “Ground-Based Measurements of O3, NO2, OClO and BrO during the 1987 Antarctic Ozone Depletion Event,” in Ozone in the Atmosphere; Proceedings of the Quadrennial Ozone Symposium 1988R. D. Bojkov, P. Fabian, eds. (Deepak Publishing, Hampton, Va., 1989), pp. 65–70.

U. Platt, D. Perner, “Measurements of atmospheric trace gases by long path differential UV/visible absorption spectroscopy,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradien, eds. (Springer, New York, 1984), vol. 39, pp. 95–105.

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Chemical Analysis Series (Wiley, New York, 1994), pp. 27–85.

J. Bösenberg, D. Brassington, P. C. Simon, “Instrument Development for Atmospheric Research and Monitoring,” European Union publication (to be published).

D. Perner, MPI Luftchemie, Mainz, Germany (personal communication, 1993).

J. Stutz, “Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller Optischer Absorptionsspektroskopie: Eine neue Generation von Geräten und Algorithmen,” Ph.D. dissertation (University Heidelberg, Heidelberg, Germany, 1996).

T. Gomer, T. Brauers, F. Heintz, J. Stutz, U. Platt, mfc User Manual, Version 1.98, (University Heidelberg, Heidelberg, Germany, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup to investigate the dependence of the spectrograph–detector system on the illumination. The aperture stops A, B, C, and D are inserted into the collimated light beam, which is produced by two lenses and a 200-µm pinhole. The light is focused on the entrance slit of the spectrograph by another lens.

Fig. 2
Fig. 2

Structures produced by changes in illumination of the spectrograph–detector system. The top spectrum shows a typical lamp spectrum with its sinusoidal étalon structure. The noise level in the ratio of two spectra taken under identical conditions without aperture stop S0′/S0 is lower than the spectral structures found in the ratios of spectra taken with different illuminations (i.e., aperture stops AD inserted), SA/S0, SB/S0, SC/S0, and SD/S0. The y scale of SD/S0 was changed to show the complete spectrum. The aperture stops used to change the illuminations are shown in Fig. 1.

Fig. 3
Fig. 3

Effects that give rise to illumination-sensitive response of the diode of a PDA: a, a dust particle illustrated with a rectangular cross section throws a shadow on the diode on the right of the particle. The diode is illuminated by a full cone of light (i.e., no aperture stop present); b, if only the right half of the cone is illuminated (e.g., owing to the presence of aperture stop A or B) the shadow is not present; c, d, an irregular surface changes the interferences in the protective layer of the PDA. The figure explains the model calculations performed to investigate this effect in two dimensions: A ray enters the layers on the PDA with angles α; the light path in the layer is therefore longer compared with a vertical ray; as a cone of light is thrown from the focusing mirror of the spectrograph on the PDA, the intensity must be integrated over all angles to derive the total intensity Itot.

Fig. 4
Fig. 4

Result of the model calculation of structures introduced by an irregular protective layer surface with a thickness d1 of the first layer. The second layer was assumed to be 2.358 µm thick. The model calculations were performed for aperture stops A, B, and D. SAth/S0th, SBth/S0th and SDth/S0th show the quotient spectra after they are divided by a fitted polynomial.

Fig. 5
Fig. 5

Experimental setup to investigate mode coupling in a multimode quartz fiber. The light beam of a helium–neon laser is fed into the fiber at an angle α. The fiber is placed between two plates with a step profile. A sheet of rubber is placed between the top aluminum plate and the profile to protect the fiber. The plates can be pressed together with a force F to introduce microbending to the fiber. The light intensity leaving the fiber is measured with a photoresistor on a screen at a 15-cm distance from the fiber end along the X axis.

Fig. 6
Fig. 6

Angular intensity distribution at the fiber end. The distribution depends on the force on the mode mixer: a, b, at a force of F = 1.7 N a nearly uniform distribution can be reached for the entrance angle α = 8 °; c, the dependence of the angular intensity distribution for various α. The shape of the distribution is approximately constant, independent of α.

Fig. 7
Fig. 7

The quartz-fiber mode mixer developed for field experiments. The quartz fiber has a length of 2 m. To shield the bare fiber from unwanted stray light, the mode mixer was installed in a closed aluminum box (15 cm × 10 cm × 10 cm) and the parts of the fiber outside this box were fed through a flexible black plastic tube. The fiber has a numerical aperture of 0.12. The fan causes gentle irregular bending of the fiber, thus averaging over different mechanical conditions of the fiber, which can change with temperature.

Fig. 8
Fig. 8

Noise and residual spectral structure of a system, including a mode mixer (Figs. 5 and 7). The structures SA/S0 and SD/S0 are smaller by a factor of more than 10 compared with the results without a mode mixer (Fig. 2).

Fig. 9
Fig. 9

Setup of a long-path DOAS instrument. A combined sending–receiving Newtonian telescope of 1.5-m focal length collimates light of a xenon arc lamp and focuses the light reflected by the retroreflectors to the entrance of the mode mixer. The end of the mode-mixer fiber is used as the entrance slit for the spectrograph. Lamp, telescope, and spectrograph–detector system are mounted on a frame that is fixed to a table with a universal joint. The frame can be rotated in all directions with the help of two stepper motors.

Fig. 10
Fig. 10

Sample evaluation of an atmospheric DOAS spectrum. To the atmospheric spectrum (top trace) the absorption spectra of the pure trace gases are fitted. The absorption spectra of O3, NO2, SO2, and HCHO scaled by the analysis routine are shown below. After all the trace gas absorptions are removed, residual structures of 6 × 10-4 (peak to peak) remain.

Tables (3)

Tables Icon

Table 1 Peak-to-Peak Residual Structures for Various Illuminations Measured in the Laboratorya

Tables Icon

Table 2 Peak-to-peak Residual Structures for Various Optical Measures to Reduce the Variation in the Angular Intensity Distribution during Atmospheric Measurements

Tables Icon

Table 3 Detection Limit of DOAS Long-Path Instruments with SD and PDA detectorsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Iλ, α, β=1-R1R31/2cos2πδ1α, βλ-R2R31/2cos2πδ2α, βλ-R3R1R21/2cos2πδ1α, β-δ2α, βλ.
δiα, β=2×ni×dicosα×cosβ.
Itotλ=αminαmaxβminβmax Iλ, α, βdβ dα.

Metrics