Abstract

We describe a polarization-controlled free-space optical multistage interconnection network based on polarization-selective computer-generated holograms: optical elements that are capable of imposing arbitrary, independent phase functions on horizontally and vertically polarized monochromatic light. We investigate the design of a novel nonblocking space-division photonic switch architecture. The multistage-switch architecture uses a fan-out stage, a single stage of 2 × 2 switching elements, and a fan-in stage. The architecture is compatible with several control strategies that use 1 × 2 and 2 × 2 polarization-controlled switches to route the input light beams. One application of the switch is in a passive optical network in which data is optically transmitted through the switch with a time-of-flight delay but without optical-to-electrical conversions at each stage. We have built and characterized a proof-of-principle 4 × 4 free-space switching network using three cascaded stages of arrayed birefringent computer-generated holographic elements. Data modulated at 20 MHz/channel were transmitted through the network to demonstrate transparent operation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for instance, IEEE J. Lightwave Technol., vol. 11, nos. 5 and 6, (1993).
  2. F. Heismann, A. F. Ambrose, To. O. Murphy, M. S. Whalen, “Polarization independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1143 (1993).
    [CrossRef]
  3. G. A. De Biase, “Optical multistage interconnection networks for large-scale multiprocessor systems,” Appl. Opt. 27, 2017–2021 (1988).
    [CrossRef] [PubMed]
  4. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
    [CrossRef] [PubMed]
  5. T. Nishi, T. Yamamoto, S. Kuronagi, “A polarization-controlled free-space photonic switch based on a PI-LOSS switch,” IEEE Photon. Technol. Lett. 5, (1993).
    [CrossRef]
  6. K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multi-channel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
    [CrossRef]
  7. Y. Wu, L. Liu, Z. Wang, “Modified gamma network and its optical implementation,” Appl. Opt. 32, 7194–7199 (1993).
    [CrossRef] [PubMed]
  8. T. Sakano, K. Kimura, K. Noguchi, N. Naito, “256 × 256 turnover-type free-space multichannel optical switch based on polarization control using liquid-crystal spatial light modulators,” Appl. Opt. 34, 2581–2589 (1995).
    [CrossRef] [PubMed]
  9. R. K. Kostuk, M. Kato, Y. T. Huang, “Polarization properties of substrate mode holographic interconnects,” Appl. Opt. 29, 3848–3854 (1990).
    [CrossRef] [PubMed]
  10. Y.-T. Huang, “Polarization-selective volume holograms: general design,” Appl. Opt. 33, 2115–2120 (1995).
    [CrossRef]
  11. T. Todorov, L. Nikolava, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4591 (1984).
    [CrossRef] [PubMed]
  12. Q. W. Song, M. C. Lee, P. J. Talbot, E. Tam, “Optical switching with photorefractive polarization holograms,” Opt. Lett. 16, 1228–1230 (1991).
    [CrossRef] [PubMed]
  13. J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1837 (1993).
    [CrossRef]
  14. J. E. Ford, F. Xu, K. Urquhart, Y. Fainman, “Polarization selective computer generated holograms,” Opt. Lett. 18, 456–458 (1992).
    [CrossRef]
  15. J. E. Ford, F. Xu, A. Krishnamoorthy, K. Urquhart, Y. Fainman, “Polarization-selective computer generated holograms for optical multistage interconnection networks,” in Optical Computing, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 258–261.
  16. F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
    [CrossRef] [PubMed]
  17. N. Nieuborg, C. Van de Pooel, A. Kirk, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive and computer-generated optical elements,” in Optical Computing, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 124–126.
  18. F. Xu, R. Tyan, P. C. Sun, Y. Fainman, C. Cheng, A. Scherer, “Form birefringence of periodic dielectric nanostructures,” Opt. Lett. 20, 2457–2459 (1995).
    [CrossRef]
  19. G. Bromwell, J. Heath, “Classification categories and historical development of circuit switching topologies,” Comput. Sur. 15, (1983).
  20. T. J. Cloonan, G. W. Richards, F. B. McCormick, A. Lentine, “Architectural considerations for an optical extended generalized shuffle network based on 2-modules,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 154–157.
  21. A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, S. Esener, “Grain-size considerations for optoelectronic multistage interconnection networks,” Appl. Opt. 31, 5480–5507 (1992).
    [CrossRef] [PubMed]
  22. G. J. Swanson, “Binary optics technology: theory and design of multi-level diffractive elements,” (Defense Advanced Research Projects Agency, Washington, D.C., 1989).
  23. L. Bhuyan, D. Agrawal, “Generalized shuffle networks,” IEEE Trans. Comput. C-32, 1081–1090 (1983).
    [CrossRef]
  24. A. V. Krishnamoorthy, F. Kiamilev “Fanout, replication, and buffer-sizing for a class of self-routing packet-switched multistage photonic switch fabrics,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–89. March1995.
  25. A. V. Krishnamoorthy, “3-dimensional optoelectronic N, M, F networks for neurocomputing and parallel processing,” Ph.D. dissertation (University of California, San Diego, San Diego, Calif., 1993).
  26. R. A. Spanke, “Architectures for large non-blocking optical space switches,” IEEE J. Quantum Electron. 22, 964–967 (1986).
    [CrossRef]
  27. T. J. Cloonan, F. McCormick, A. Lentine, “Control injection schemes for photonic switching architectures,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 162–165.
  28. R. A. Spanke, V. Benes, “N-stage planar optical permutation network,” Appl. Opt. 27, 1226–1229 (1987).
    [CrossRef]
  29. V. E. Benes, “Growth, complexity and performance of telephone connecting networks,” Bell Sys. Tech. J. 62, 499–539 (1983).
    [CrossRef]
  30. K. Padmanaphan, A. Netraveli, “Dilated networks for photonic switching,” IEEE Trans. Commun. 30, 1357–1365 (1987).
    [CrossRef]
  31. S. C. Knauer, A. Huang, J. H. O’Neill, “Self-routing switching network,” in CMOS VLSI Design, N. Weste, K. Eshraghian, eds. (Addison-Wesley, Reading, Mass., 1988), Chap. 9, pp. 424–448.
  32. N. K. Ailawadi, “Photonic switching architectures and their comparison,” in Frontiers in Computing Systems Research, S. Tewksbury, ed. (Plenum, New York, 1990), Vol. 1, pp. 129–186.
    [CrossRef]
  33. A. V. Krishnamoorthy, F. Xu, J. Ford, Y. Fainman, “Polarization-controlled multistage interconnection network based on birefringent computer generated holograms,” in Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Knowel, W. J. Miceli, eds., Proc. SPIE2297, 345–349 (1994).

1995 (4)

1993 (5)

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1837 (1993).
[CrossRef]

Y. Wu, L. Liu, Z. Wang, “Modified gamma network and its optical implementation,” Appl. Opt. 32, 7194–7199 (1993).
[CrossRef] [PubMed]

T. Nishi, T. Yamamoto, S. Kuronagi, “A polarization-controlled free-space photonic switch based on a PI-LOSS switch,” IEEE Photon. Technol. Lett. 5, (1993).
[CrossRef]

See, for instance, IEEE J. Lightwave Technol., vol. 11, nos. 5 and 6, (1993).

F. Heismann, A. F. Ambrose, To. O. Murphy, M. S. Whalen, “Polarization independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1143 (1993).
[CrossRef]

1992 (2)

1991 (2)

Q. W. Song, M. C. Lee, P. J. Talbot, E. Tam, “Optical switching with photorefractive polarization holograms,” Opt. Lett. 16, 1228–1230 (1991).
[CrossRef] [PubMed]

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multi-channel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

1990 (1)

1988 (2)

1987 (2)

R. A. Spanke, V. Benes, “N-stage planar optical permutation network,” Appl. Opt. 27, 1226–1229 (1987).
[CrossRef]

K. Padmanaphan, A. Netraveli, “Dilated networks for photonic switching,” IEEE Trans. Commun. 30, 1357–1365 (1987).
[CrossRef]

1986 (1)

R. A. Spanke, “Architectures for large non-blocking optical space switches,” IEEE J. Quantum Electron. 22, 964–967 (1986).
[CrossRef]

1984 (1)

1983 (3)

G. Bromwell, J. Heath, “Classification categories and historical development of circuit switching topologies,” Comput. Sur. 15, (1983).

V. E. Benes, “Growth, complexity and performance of telephone connecting networks,” Bell Sys. Tech. J. 62, 499–539 (1983).
[CrossRef]

L. Bhuyan, D. Agrawal, “Generalized shuffle networks,” IEEE Trans. Comput. C-32, 1081–1090 (1983).
[CrossRef]

Agrawal, D.

L. Bhuyan, D. Agrawal, “Generalized shuffle networks,” IEEE Trans. Comput. C-32, 1081–1090 (1983).
[CrossRef]

Ailawadi, N. K.

N. K. Ailawadi, “Photonic switching architectures and their comparison,” in Frontiers in Computing Systems Research, S. Tewksbury, ed. (Plenum, New York, 1990), Vol. 1, pp. 129–186.
[CrossRef]

Ambrose, A. F.

F. Heismann, A. F. Ambrose, To. O. Murphy, M. S. Whalen, “Polarization independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1143 (1993).
[CrossRef]

Benes, V.

R. A. Spanke, V. Benes, “N-stage planar optical permutation network,” Appl. Opt. 27, 1226–1229 (1987).
[CrossRef]

Benes, V. E.

V. E. Benes, “Growth, complexity and performance of telephone connecting networks,” Bell Sys. Tech. J. 62, 499–539 (1983).
[CrossRef]

Bhuyan, L.

L. Bhuyan, D. Agrawal, “Generalized shuffle networks,” IEEE Trans. Comput. C-32, 1081–1090 (1983).
[CrossRef]

Bromwell, G.

G. Bromwell, J. Heath, “Classification categories and historical development of circuit switching topologies,” Comput. Sur. 15, (1983).

Cheng, C.

Cloonan, T. J.

T. J. Cloonan, G. W. Richards, F. B. McCormick, A. Lentine, “Architectural considerations for an optical extended generalized shuffle network based on 2-modules,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 154–157.

T. J. Cloonan, F. McCormick, A. Lentine, “Control injection schemes for photonic switching architectures,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 162–165.

Columbus, D.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1837 (1993).
[CrossRef]

De Biase, G. A.

Dultz, W.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1837 (1993).
[CrossRef]

Esener, S.

Fainman, Y.

F. Xu, R. Tyan, P. C. Sun, Y. Fainman, C. Cheng, A. Scherer, “Form birefringence of periodic dielectric nanostructures,” Opt. Lett. 20, 2457–2459 (1995).
[CrossRef]

F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
[CrossRef] [PubMed]

J. E. Ford, F. Xu, K. Urquhart, Y. Fainman, “Polarization selective computer generated holograms,” Opt. Lett. 18, 456–458 (1992).
[CrossRef]

A. V. Krishnamoorthy, F. Xu, J. Ford, Y. Fainman, “Polarization-controlled multistage interconnection network based on birefringent computer generated holograms,” in Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Knowel, W. J. Miceli, eds., Proc. SPIE2297, 345–349 (1994).

J. E. Ford, F. Xu, A. Krishnamoorthy, K. Urquhart, Y. Fainman, “Polarization-selective computer generated holograms for optical multistage interconnection networks,” in Optical Computing, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 258–261.

Ford, J.

A. V. Krishnamoorthy, F. Xu, J. Ford, Y. Fainman, “Polarization-controlled multistage interconnection network based on birefringent computer generated holograms,” in Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Knowel, W. J. Miceli, eds., Proc. SPIE2297, 345–349 (1994).

Ford, J. E.

F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
[CrossRef] [PubMed]

J. E. Ford, F. Xu, K. Urquhart, Y. Fainman, “Polarization selective computer generated holograms,” Opt. Lett. 18, 456–458 (1992).
[CrossRef]

J. E. Ford, F. Xu, A. Krishnamoorthy, K. Urquhart, Y. Fainman, “Polarization-selective computer generated holograms for optical multistage interconnection networks,” in Optical Computing, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 258–261.

Heath, J.

G. Bromwell, J. Heath, “Classification categories and historical development of circuit switching topologies,” Comput. Sur. 15, (1983).

Heismann, F.

F. Heismann, A. F. Ambrose, To. O. Murphy, M. S. Whalen, “Polarization independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1143 (1993).
[CrossRef]

Hossfeld, J.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1837 (1993).
[CrossRef]

Huang, A.

S. C. Knauer, A. Huang, J. H. O’Neill, “Self-routing switching network,” in CMOS VLSI Design, N. Weste, K. Eshraghian, eds. (Addison-Wesley, Reading, Mass., 1988), Chap. 9, pp. 424–448.

Huang, Y. T.

Huang, Y.-T.

Johnson, K. M.

Kato, M.

Kiamilev, F.

A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, S. Esener, “Grain-size considerations for optoelectronic multistage interconnection networks,” Appl. Opt. 31, 5480–5507 (1992).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, F. Kiamilev “Fanout, replication, and buffer-sizing for a class of self-routing packet-switched multistage photonic switch fabrics,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–89. March1995.

Kimura, K.

Kirk, A.

N. Nieuborg, C. Van de Pooel, A. Kirk, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive and computer-generated optical elements,” in Optical Computing, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 124–126.

Knauer, S. C.

S. C. Knauer, A. Huang, J. H. O’Neill, “Self-routing switching network,” in CMOS VLSI Design, N. Weste, K. Eshraghian, eds. (Addison-Wesley, Reading, Mass., 1988), Chap. 9, pp. 424–448.

Kostuk, R. K.

Krishnamoorthy, A.

J. E. Ford, F. Xu, A. Krishnamoorthy, K. Urquhart, Y. Fainman, “Polarization-selective computer generated holograms for optical multistage interconnection networks,” in Optical Computing, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 258–261.

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, S. Esener, “Grain-size considerations for optoelectronic multistage interconnection networks,” Appl. Opt. 31, 5480–5507 (1992).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, “3-dimensional optoelectronic N, M, F networks for neurocomputing and parallel processing,” Ph.D. dissertation (University of California, San Diego, San Diego, Calif., 1993).

A. V. Krishnamoorthy, F. Kiamilev “Fanout, replication, and buffer-sizing for a class of self-routing packet-switched multistage photonic switch fabrics,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–89. March1995.

A. V. Krishnamoorthy, F. Xu, J. Ford, Y. Fainman, “Polarization-controlled multistage interconnection network based on birefringent computer generated holograms,” in Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Knowel, W. J. Miceli, eds., Proc. SPIE2297, 345–349 (1994).

Kuronagi, S.

T. Nishi, T. Yamamoto, S. Kuronagi, “A polarization-controlled free-space photonic switch based on a PI-LOSS switch,” IEEE Photon. Technol. Lett. 5, (1993).
[CrossRef]

Lee, M. C.

Lentine, A.

T. J. Cloonan, G. W. Richards, F. B. McCormick, A. Lentine, “Architectural considerations for an optical extended generalized shuffle network based on 2-modules,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 154–157.

T. J. Cloonan, F. McCormick, A. Lentine, “Control injection schemes for photonic switching architectures,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 162–165.

Liu, L.

Marchand, P.

Matsumoto, T.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multi-channel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

McCormick, F.

T. J. Cloonan, F. McCormick, A. Lentine, “Control injection schemes for photonic switching architectures,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 162–165.

McCormick, F. B.

T. J. Cloonan, G. W. Richards, F. B. McCormick, A. Lentine, “Architectural considerations for an optical extended generalized shuffle network based on 2-modules,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 154–157.

Murphy, To. O.

F. Heismann, A. F. Ambrose, To. O. Murphy, M. S. Whalen, “Polarization independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1143 (1993).
[CrossRef]

Naito, N.

Netraveli, A.

K. Padmanaphan, A. Netraveli, “Dilated networks for photonic switching,” IEEE Trans. Commun. 30, 1357–1365 (1987).
[CrossRef]

Nieuborg, N.

N. Nieuborg, C. Van de Pooel, A. Kirk, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive and computer-generated optical elements,” in Optical Computing, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 124–126.

Nikolava, L.

Nishi, T.

T. Nishi, T. Yamamoto, S. Kuronagi, “A polarization-controlled free-space photonic switch based on a PI-LOSS switch,” IEEE Photon. Technol. Lett. 5, (1993).
[CrossRef]

Noguchi, K.

T. Sakano, K. Kimura, K. Noguchi, N. Naito, “256 × 256 turnover-type free-space multichannel optical switch based on polarization control using liquid-crystal spatial light modulators,” Appl. Opt. 34, 2581–2589 (1995).
[CrossRef] [PubMed]

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multi-channel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

O’Neill, J. H.

S. C. Knauer, A. Huang, J. H. O’Neill, “Self-routing switching network,” in CMOS VLSI Design, N. Weste, K. Eshraghian, eds. (Addison-Wesley, Reading, Mass., 1988), Chap. 9, pp. 424–448.

Padmanaphan, K.

K. Padmanaphan, A. Netraveli, “Dilated networks for photonic switching,” IEEE Trans. Commun. 30, 1357–1365 (1987).
[CrossRef]

Richards, G. W.

T. J. Cloonan, G. W. Richards, F. B. McCormick, A. Lentine, “Architectural considerations for an optical extended generalized shuffle network based on 2-modules,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 154–157.

Sakano, T.

T. Sakano, K. Kimura, K. Noguchi, N. Naito, “256 × 256 turnover-type free-space multichannel optical switch based on polarization control using liquid-crystal spatial light modulators,” Appl. Opt. 34, 2581–2589 (1995).
[CrossRef] [PubMed]

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multi-channel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

Scherer, A.

Shamir, J.

Song, Q. W.

Spanke, R. A.

R. A. Spanke, V. Benes, “N-stage planar optical permutation network,” Appl. Opt. 27, 1226–1229 (1987).
[CrossRef]

R. A. Spanke, “Architectures for large non-blocking optical space switches,” IEEE J. Quantum Electron. 22, 964–967 (1986).
[CrossRef]

Sprave, H.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1837 (1993).
[CrossRef]

Sun, P. C.

Surette, M. R.

Swanson, G. J.

G. J. Swanson, “Binary optics technology: theory and design of multi-level diffractive elements,” (Defense Advanced Research Projects Agency, Washington, D.C., 1989).

Talbot, P. J.

Tam, E.

Thienpont, H.

N. Nieuborg, C. Van de Pooel, A. Kirk, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive and computer-generated optical elements,” in Optical Computing, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 124–126.

Todorov, T.

Tomova, N.

Tschudi, T.

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1837 (1993).
[CrossRef]

Tyan, R.

Urquhart, K.

J. E. Ford, F. Xu, K. Urquhart, Y. Fainman, “Polarization selective computer generated holograms,” Opt. Lett. 18, 456–458 (1992).
[CrossRef]

J. E. Ford, F. Xu, A. Krishnamoorthy, K. Urquhart, Y. Fainman, “Polarization-selective computer generated holograms for optical multistage interconnection networks,” in Optical Computing, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 258–261.

Van de Pooel, C.

N. Nieuborg, C. Van de Pooel, A. Kirk, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive and computer-generated optical elements,” in Optical Computing, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 124–126.

Veretennicoff, I.

N. Nieuborg, C. Van de Pooel, A. Kirk, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive and computer-generated optical elements,” in Optical Computing, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 124–126.

Wang, Z.

Whalen, M. S.

F. Heismann, A. F. Ambrose, To. O. Murphy, M. S. Whalen, “Polarization independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1143 (1993).
[CrossRef]

Wu, Y.

Xu, F.

F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
[CrossRef] [PubMed]

F. Xu, R. Tyan, P. C. Sun, Y. Fainman, C. Cheng, A. Scherer, “Form birefringence of periodic dielectric nanostructures,” Opt. Lett. 20, 2457–2459 (1995).
[CrossRef]

J. E. Ford, F. Xu, K. Urquhart, Y. Fainman, “Polarization selective computer generated holograms,” Opt. Lett. 18, 456–458 (1992).
[CrossRef]

A. V. Krishnamoorthy, F. Xu, J. Ford, Y. Fainman, “Polarization-controlled multistage interconnection network based on birefringent computer generated holograms,” in Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Knowel, W. J. Miceli, eds., Proc. SPIE2297, 345–349 (1994).

J. E. Ford, F. Xu, A. Krishnamoorthy, K. Urquhart, Y. Fainman, “Polarization-selective computer generated holograms for optical multistage interconnection networks,” in Optical Computing, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 258–261.

Yamamoto, T.

T. Nishi, T. Yamamoto, S. Kuronagi, “A polarization-controlled free-space photonic switch based on a PI-LOSS switch,” IEEE Photon. Technol. Lett. 5, (1993).
[CrossRef]

Appl. Opt. (10)

G. A. De Biase, “Optical multistage interconnection networks for large-scale multiprocessor systems,” Appl. Opt. 27, 2017–2021 (1988).
[CrossRef] [PubMed]

K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
[CrossRef] [PubMed]

Y. Wu, L. Liu, Z. Wang, “Modified gamma network and its optical implementation,” Appl. Opt. 32, 7194–7199 (1993).
[CrossRef] [PubMed]

T. Sakano, K. Kimura, K. Noguchi, N. Naito, “256 × 256 turnover-type free-space multichannel optical switch based on polarization control using liquid-crystal spatial light modulators,” Appl. Opt. 34, 2581–2589 (1995).
[CrossRef] [PubMed]

R. K. Kostuk, M. Kato, Y. T. Huang, “Polarization properties of substrate mode holographic interconnects,” Appl. Opt. 29, 3848–3854 (1990).
[CrossRef] [PubMed]

Y.-T. Huang, “Polarization-selective volume holograms: general design,” Appl. Opt. 33, 2115–2120 (1995).
[CrossRef]

T. Todorov, L. Nikolava, N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23, 4309–4591 (1984).
[CrossRef] [PubMed]

F. Xu, J. E. Ford, Y. Fainman, “Polarization-selective computer-generated holograms: design, fabrication, and applications,” Appl. Opt. 34, 256–266 (1995).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, S. Esener, “Grain-size considerations for optoelectronic multistage interconnection networks,” Appl. Opt. 31, 5480–5507 (1992).
[CrossRef] [PubMed]

R. A. Spanke, V. Benes, “N-stage planar optical permutation network,” Appl. Opt. 27, 1226–1229 (1987).
[CrossRef]

Bell Sys. Tech. J. (1)

V. E. Benes, “Growth, complexity and performance of telephone connecting networks,” Bell Sys. Tech. J. 62, 499–539 (1983).
[CrossRef]

Comput. Sur. (1)

G. Bromwell, J. Heath, “Classification categories and historical development of circuit switching topologies,” Comput. Sur. 15, (1983).

IEEE J. Lightwave Technol. (2)

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multi-channel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

See, for instance, IEEE J. Lightwave Technol., vol. 11, nos. 5 and 6, (1993).

IEEE J. Quantum Electron. (1)

R. A. Spanke, “Architectures for large non-blocking optical space switches,” IEEE J. Quantum Electron. 22, 964–967 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

F. Heismann, A. F. Ambrose, To. O. Murphy, M. S. Whalen, “Polarization independent photonic switching system using fast automatic polarization controllers,” IEEE Photon. Technol. Lett. 5, 1341–1143 (1993).
[CrossRef]

T. Nishi, T. Yamamoto, S. Kuronagi, “A polarization-controlled free-space photonic switch based on a PI-LOSS switch,” IEEE Photon. Technol. Lett. 5, (1993).
[CrossRef]

IEEE Trans. Commun. (1)

K. Padmanaphan, A. Netraveli, “Dilated networks for photonic switching,” IEEE Trans. Commun. 30, 1357–1365 (1987).
[CrossRef]

IEEE Trans. Comput. (1)

L. Bhuyan, D. Agrawal, “Generalized shuffle networks,” IEEE Trans. Comput. C-32, 1081–1090 (1983).
[CrossRef]

Opt. Eng. (1)

J. Hossfeld, D. Columbus, H. Sprave, T. Tschudi, W. Dultz, “Polarizing computer-generated holograms,” Opt. Eng. 32, 1835–1837 (1993).
[CrossRef]

Opt. Lett. (3)

Other (10)

T. J. Cloonan, G. W. Richards, F. B. McCormick, A. Lentine, “Architectural considerations for an optical extended generalized shuffle network based on 2-modules,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 154–157.

J. E. Ford, F. Xu, A. Krishnamoorthy, K. Urquhart, Y. Fainman, “Polarization-selective computer generated holograms for optical multistage interconnection networks,” in Optical Computing, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 258–261.

N. Nieuborg, C. Van de Pooel, A. Kirk, H. Thienpont, I. Veretennicoff, “Polarization-selective diffractive and computer-generated optical elements,” in Optical Computing, Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 124–126.

A. V. Krishnamoorthy, F. Kiamilev “Fanout, replication, and buffer-sizing for a class of self-routing packet-switched multistage photonic switch fabrics,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–89. March1995.

A. V. Krishnamoorthy, “3-dimensional optoelectronic N, M, F networks for neurocomputing and parallel processing,” Ph.D. dissertation (University of California, San Diego, San Diego, Calif., 1993).

G. J. Swanson, “Binary optics technology: theory and design of multi-level diffractive elements,” (Defense Advanced Research Projects Agency, Washington, D.C., 1989).

S. C. Knauer, A. Huang, J. H. O’Neill, “Self-routing switching network,” in CMOS VLSI Design, N. Weste, K. Eshraghian, eds. (Addison-Wesley, Reading, Mass., 1988), Chap. 9, pp. 424–448.

N. K. Ailawadi, “Photonic switching architectures and their comparison,” in Frontiers in Computing Systems Research, S. Tewksbury, ed. (Plenum, New York, 1990), Vol. 1, pp. 129–186.
[CrossRef]

A. V. Krishnamoorthy, F. Xu, J. Ford, Y. Fainman, “Polarization-controlled multistage interconnection network based on birefringent computer generated holograms,” in Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Knowel, W. J. Miceli, eds., Proc. SPIE2297, 345–349 (1994).

T. J. Cloonan, F. McCormick, A. Lentine, “Control injection schemes for photonic switching architectures,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 162–165.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Principle of operation of a polarization-selective hologram: The lenses represent two imaging stages of which the first imaging stage places one polarization on each Fourier-plane hologram and the second combines the outputs of the two polarizations. Here, 4-f imaging is required to transfer both the amplitude and phase of the incident wave front accurately. A BCGH combines the functionality of polarization beam splitters and associated interconnection optics in a single planar element.

Fig. 2
Fig. 2

Schematic diagram of the construction of BCGH’s by the placement of two thin holographic elements face to face. At least one of the holograms is etched in an anisotropic medium (e.g., LiNO3). H, horizontally; V, vertically; pol, polarized.

Fig. 3
Fig. 3

Fabrication method and states of 2 × 2 switches: (a) A 2 × 2 switch either passes the inputs straight through or exchanges the inputs. (b) A 2 × 2 switch can be implemented by use of two 1 × 2 inputs with their respective outputs tied together. (c) Allowed and disallowed states. Disallowed states must be carefully avoided. In a BCGH implementation this is ensured by the requirement that the two inputs have orthogonal polarizations and by use of a 0° or 90° PR switch.

Fig. 4
Fig. 4

Components of a 2 × 2 switch: two BCGH’s and a polarization modulator. η is the switch efficiency, R is the transmittance, and C is the coupling efficiency associated with clipping losses, which are incurred when imaging a beam through a modulator aperture.

Fig. 5
Fig. 5

(a) Stretch switch with eight inputs–outputs, a fan-out of 4, and one stage of 2 × 2 switches. The switch is nonblocking, and the first-order cross talk of the network is equal to the cross talk of a single switch. All lines represent point-to-point connections. (b) Fan-out modules may either be passive or active. (c) Fan-in, similarly to fan-out, may be active, passive with optical fan-in, or implemented with separate detectors and electrical multiplexing (Mux).

Fig. 6
Fig. 6

Possible control algorithms for BCGH-based MIN’s: (a) centralized control with global switching, (b) centralized control with direct injection, (c) centralized control with packet headers, and (d) distributed control with self-routing headers.

Fig. 7
Fig. 7

Network attenuation αs (in decibels) versus the number of input ports N for BCGH-based MIN’s with the assumption of a 2 × 2 switch insertion loss of 0.64 dB. X-Bar, crossbar.

Fig. 8
Fig. 8

SNR βs (in decibels) versus the number of input ports N for BCGH-based MIN’s with the assumption of a 2 × 2 switch SNR of 30 db. X-Bar, crossbar.

Fig. 9
Fig. 9

Network SNR βs (in decibels) versus the number of input ports N for BCGH-based MIN’s with the assumption of a 2 × 2 switch SNR of 20 dB. X-Bar, crossbar.

Fig. 10
Fig. 10

Schematic diagram of a 4 × 4 BCGH Stretch switch. The demonstration system in this study employed a two-dimensional folded version of the optical 2-shuffle interconnection. Scope, oscilloscope; V-pol., vertically polarized; H-pol., horizontally polarized.

Fig. 11
Fig. 11

Diagram of the optical system for the 4 × 4 switch implementation for tracing two input paths. In the implementation, the network was folded into a two-dimensional array with equal spacing in the horizontal and vertical directions. Scope, oscilloscope; V-pol., vertically polarized; H-pol., horizontally polarized.

Fig. 12
Fig. 12

Schematic cross section of the BCGH used for the MIN studied here. The BCGH was fabricated in LiNbO3. The substrate thickness was 1 mm, and the operating wavelength was 514.5 mm.

Fig. 13
Fig. 13

Photograph of the 4 × 4 BCGH element array. The dimensions of the array are 16 mm × 16 mm.

Fig. 14
Fig. 14

Photograph of three cascaded BCGH arrays that formed the core of the demonstration free-space switch. The manual PR was used to characterize the network and was replaced by an electrically controlled LCPR for fast reconfiguration.

Fig. 15
Fig. 15

Four-trace oscilloscope photographs showing the outputs of the 4 × 4 switch. An input to the 4 × 4 switch is being switched (reconfigured) between (a) outputs 1 and 2, (b) outputs 2 and 3, (c) outputs 3 and 4, and (d) outputs 1 and 4. Network cross talk was limited by the 4:1 contrast ratio of the polarization rotator. A SNR of 13 db was measured with manual PR’s. The horizontal sweep rate is 10 ms/division.

Fig. 16
Fig. 16

Four-trace oscilloscope photographs showing two active inputs to the 4 × 4 switch being simultaneously switched between two outputs of the network. The horizontal sweep rate is 10 ms/division.

Fig. 17
Fig. 17

Eye diagram of a switch output. The input was a laser modulated at 20 MHZ by use of an acousto-optic cell.

Tables (3)

Tables Icon

Table 1 Performance Scaling for Several Well-Known Photonic Switch Architectures in Terms of the Network Size N

Tables Icon

Table 2 Performance Scaling for Various Configurations of the Stretch Network versus the Network Size Na

Tables Icon

Table 3 Performance Estimates for a Scalable Switch (N ≥ 1024 Channels) and Best Experimental Results to Date for 1 × 2, 2 × 2, and 4 × 4 BCGH Switches

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ηBCGH=sinc21Φasinc21Φb.
ηswitch=ηBCGH2Rg8Rm2C.
SNRnetwork=log101/δc-log10 S.

Metrics