Abstract

A novel, switched, photonic delay-line ternary design combined with a wavelength-multiplexed transmit–receive beam-former architecture is proposed. One-dimensional antenna beam steering by use of a single-channel, wavelength-dependent switched photonic delay line in cascade with a multichannel wavelength-independent switched photonic delay line is proposed for hardware-compressed, phased-array antenna control with subarray antenna partitioning. Beam-former architecture extensions to two-dimensional antenna beam steering are described.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Ng, A. A. Waltson, G. L. Targoran, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
    [CrossRef]
  2. D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996).
    [CrossRef] [PubMed]
  3. H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
    [CrossRef]
  4. N. A. Riza, “A transmit/receive time delay optical beamforming arc hitecture for phased array antennas,” Appl. Opt. 30, 4593–4596 (1991);N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994);N. A. Riza, “25-Channel nematic liquid crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995);N. A. Riza, N. Madamopoulos, “High signal-to-noise ratio birefringence-compensated optical delay line based on a noise-reduction scheme,” Opt. Lett. 20, 2351–2353 (1995).
    [CrossRef] [PubMed]
  5. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware compressive fiber-optic true time delay steering system for phased array antennas,” Appl. Opt. 33, 8173–8185 (1994).
    [CrossRef] [PubMed]
  6. S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdmann, R. A. Soref, “Variable time delay of microwave signals using high dispersion fibre,” Electron. Lett. 29, 555–556 (1993).
    [CrossRef]
  7. M. Frankel, R. D. Esman, M. G. Parent, “Array transmitter/receiver controlled by a true time-delay fiber-optic beamformer,” IEEE Photon. Technol. Lett. 7, 1216–1218 (1995).
    [CrossRef]
  8. N. A. Riza, “Maximum hardware compression reversible photonic beamformer for wideband phased array systems,” paper presented at the Optical Society of America Annual Meeting, 20–25 October 1996, Rochester, N.Y., paper ThQQ6; N. A. Riza, N. Madapoulous, “Ternary switched photonic delay lines for rf and microwave array signal processing,” paper presented at the Optical Society of America Annual Meeting, 20–25 October 1996, Rochester, N.Y., paper ThQQ7; N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).
  9. J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
  10. C. Hills, Global Fiber Optics, Mississauga, Ontario, Canada (personal communication, 19June1996).
  11. M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
    [CrossRef]
  12. L. J. Lembo, T. Holcomb, M. Wickham, P. Wisseman, J. C. Brock, “Low loss fiber optic time-delay element for phased-array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE2155, (1994).
  13. G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, (1994).
  14. K. Brundin, 3M Specialty Optical Fibers, West Haven, Conn. (personal communication, 12June1996).
  15. R. Lundin, “Dispersion flattening in a W fiber,” Appl. Opt. 33, 1011–1014 (1994).
    [CrossRef] [PubMed]
  16. S. P. Survaiya, R. K. Shevgaonkar, “Design of subpicosecond dispersion-flattened fibers,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
    [CrossRef]
  17. Model SMF-28 Single-mode optical fiber (Corning Inc., Corning, New York, 1996).
  18. M. Onishi, H. Kanamori, T. Kato, M. Nishimura, “Optimization of dispersion-compensating fibers considering self-phase modulation suppression,” in Optical Fiber Communication Conference (OFC), Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 200–201.
  19. Integrated Photonics Research, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996).
  20. N. A. Riza, N. Madamopoulos, “Phased array radar control using ferroelectric liquid crystal devices,” in LEOS ’96 Conference Proceedings: Ninth Annual Meeting (IEEE-Lasers and Electro-Optics Society, Boston, Mass., 1996), Vol. 2, paper WG2, pp. 52–53.
  21. Displaytech, Inc., Displaytech Shutters User’s Manual, Version 1.1 (Displaytech, Inc., Boulder, Colo., February1996).
  22. C. Crandall, Displaytech, Inc., Boulder, Colo. (personal communication, 23February1996).
  23. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  24. D. A. Dish, David Sarnoff Research Center, Princeton, N.J. (personal communication, 25November1996).
  25. Photonic Integration Research, Inc., Periodical No. 11, Columbus, Oh., September1996.

1996 (2)

1995 (2)

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

M. Frankel, R. D. Esman, M. G. Parent, “Array transmitter/receiver controlled by a true time-delay fiber-optic beamformer,” IEEE Photon. Technol. Lett. 7, 1216–1218 (1995).
[CrossRef]

1994 (3)

1993 (1)

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdmann, R. A. Soref, “Variable time delay of microwave signals using high dispersion fibre,” Electron. Lett. 29, 555–556 (1993).
[CrossRef]

1991 (2)

N. A. Riza, “A transmit/receive time delay optical beamforming arc hitecture for phased array antennas,” Appl. Opt. 30, 4593–4596 (1991);N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994);N. A. Riza, “25-Channel nematic liquid crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995);N. A. Riza, N. Madamopoulos, “High signal-to-noise ratio birefringence-compensated optical delay line based on a noise-reduction scheme,” Opt. Lett. 20, 2351–2353 (1995).
[CrossRef] [PubMed]

W. Ng, A. A. Waltson, G. L. Targoran, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

1989 (1)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Antoine, J.

Ball, G. A.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, (1994).

Bernstein, N.

W. Ng, A. A. Waltson, G. L. Targoran, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Brock, J. C.

L. J. Lembo, T. Holcomb, M. Wickham, P. Wisseman, J. C. Brock, “Low loss fiber optic time-delay element for phased-array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE2155, (1994).

Brundin, K.

K. Brundin, 3M Specialty Optical Fibers, West Haven, Conn. (personal communication, 12June1996).

Chang, Y.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Crandall, C.

C. Crandall, Displaytech, Inc., Boulder, Colo. (personal communication, 23February1996).

Davies, D. K.

Dish, D. A.

D. A. Dish, David Sarnoff Research Center, Princeton, N.J. (personal communication, 25November1996).

Dolfi, D.

Erdmann, R.

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdmann, R. A. Soref, “Variable time delay of microwave signals using high dispersion fibre,” Electron. Lett. 29, 555–556 (1993).
[CrossRef]

Esman, R. D.

M. Frankel, R. D. Esman, M. G. Parent, “Array transmitter/receiver controlled by a true time-delay fiber-optic beamformer,” IEEE Photon. Technol. Lett. 7, 1216–1218 (1995).
[CrossRef]

Espiau, F. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Fetterman, H. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Forrest, S. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Frankel, M.

M. Frankel, R. D. Esman, M. G. Parent, “Array transmitter/receiver controlled by a true time-delay fiber-optic beamformer,” IEEE Photon. Technol. Lett. 7, 1216–1218 (1995).
[CrossRef]

Glenn, W. H.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, (1994).

Goutzoulis, A. P.

Granger, P.

Haus, H. A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Hills, C.

C. Hills, Global Fiber Optics, Mississauga, Ontario, Canada (personal communication, 19June1996).

Holcomb, T.

L. J. Lembo, T. Holcomb, M. Wickham, P. Wisseman, J. C. Brock, “Low loss fiber optic time-delay element for phased-array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE2155, (1994).

Hrycak, P.

Huignard, J.-P.

Joffre, P.

Johns, S. T.

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdmann, R. A. Soref, “Variable time delay of microwave signals using high dispersion fibre,” Electron. Lett. 29, 555–556 (1993).
[CrossRef]

Johnson, A.

Kanamori, H.

M. Onishi, H. Kanamori, T. Kato, M. Nishimura, “Optimization of dispersion-compensating fibers considering self-phase modulation suppression,” in Optical Fiber Communication Conference (OFC), Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 200–201.

Kato, T.

M. Onishi, H. Kanamori, T. Kato, M. Nishimura, “Optimization of dispersion-compensating fibers considering self-phase modulation suppression,” in Optical Fiber Communication Conference (OFC), Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 200–201.

Keefer, C. W.

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdmann, R. A. Soref, “Variable time delay of microwave signals using high dispersion fibre,” Electron. Lett. 29, 555–556 (1993).
[CrossRef]

Kelly, J. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Kim, J.

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).

Lee, J. J.

W. Ng, A. A. Waltson, G. L. Targoran, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Lembo, L. J.

L. J. Lembo, T. Holcomb, M. Wickham, P. Wisseman, J. C. Brock, “Low loss fiber optic time-delay element for phased-array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE2155, (1994).

Lundin, R.

Madamopoulos, N.

N. A. Riza, N. Madamopoulos, “Phased array radar control using ferroelectric liquid crystal devices,” in LEOS ’96 Conference Proceedings: Ninth Annual Meeting (IEEE-Lasers and Electro-Optics Society, Boston, Mass., 1996), Vol. 2, paper WG2, pp. 52–53.

Martinelli, M.

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Mather, A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Morey, W. W.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, (1994).

Newberg, I. L.

W. Ng, A. A. Waltson, G. L. Targoran, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Ng, W.

W. Ng, A. A. Waltson, G. L. Targoran, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Nishimura, M.

M. Onishi, H. Kanamori, T. Kato, M. Nishimura, “Optimization of dispersion-compensating fibers considering self-phase modulation suppression,” in Optical Fiber Communication Conference (OFC), Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 200–201.

Norton, D. A.

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdmann, R. A. Soref, “Variable time delay of microwave signals using high dispersion fibre,” Electron. Lett. 29, 555–556 (1993).
[CrossRef]

Onishi, M.

M. Onishi, H. Kanamori, T. Kato, M. Nishimura, “Optimization of dispersion-compensating fibers considering self-phase modulation suppression,” in Optical Fiber Communication Conference (OFC), Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 200–201.

Osgood, R. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Parent, M. G.

M. Frankel, R. D. Esman, M. G. Parent, “Array transmitter/receiver controlled by a true time-delay fiber-optic beamformer,” IEEE Photon. Technol. Lett. 7, 1216–1218 (1995).
[CrossRef]

Philippet, D.

Plant, D. V.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Riza, N. A.

N. A. Riza, “A transmit/receive time delay optical beamforming arc hitecture for phased array antennas,” Appl. Opt. 30, 4593–4596 (1991);N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994);N. A. Riza, “25-Channel nematic liquid crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995);N. A. Riza, N. Madamopoulos, “High signal-to-noise ratio birefringence-compensated optical delay line based on a noise-reduction scheme,” Opt. Lett. 20, 2351–2353 (1995).
[CrossRef] [PubMed]

N. A. Riza, “Maximum hardware compression reversible photonic beamformer for wideband phased array systems,” paper presented at the Optical Society of America Annual Meeting, 20–25 October 1996, Rochester, N.Y., paper ThQQ6; N. A. Riza, N. Madapoulous, “Ternary switched photonic delay lines for rf and microwave array signal processing,” paper presented at the Optical Society of America Annual Meeting, 20–25 October 1996, Rochester, N.Y., paper ThQQ7; N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).

N. A. Riza, N. Madamopoulos, “Phased array radar control using ferroelectric liquid crystal devices,” in LEOS ’96 Conference Proceedings: Ninth Annual Meeting (IEEE-Lasers and Electro-Optics Society, Boston, Mass., 1996), Vol. 2, paper WG2, pp. 52–53.

Scott, D. C.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Shevgaonkar, R. K.

S. P. Survaiya, R. K. Shevgaonkar, “Design of subpicosecond dispersion-flattened fibers,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

Simonis, G. J.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Soref, R. A.

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdmann, R. A. Soref, “Variable time delay of microwave signals using high dispersion fibre,” Electron. Lett. 29, 555–556 (1993).
[CrossRef]

Streier, W. H.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Survaiya, S. P.

S. P. Survaiya, R. K. Shevgaonkar, “Design of subpicosecond dispersion-flattened fibers,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

Targoran, G. L.

W. Ng, A. A. Waltson, G. L. Targoran, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Waltson, A. A.

W. Ng, A. A. Waltson, G. L. Targoran, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Wickham, M.

L. J. Lembo, T. Holcomb, M. Wickham, P. Wisseman, J. C. Brock, “Low loss fiber optic time-delay element for phased-array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE2155, (1994).

Wisseman, P.

L. J. Lembo, T. Holcomb, M. Wickham, P. Wisseman, J. C. Brock, “Low loss fiber optic time-delay element for phased-array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE2155, (1994).

Wu, M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Zomp, J. M.

Appl. Opt. (4)

N. A. Riza, “A transmit/receive time delay optical beamforming arc hitecture for phased array antennas,” Appl. Opt. 30, 4593–4596 (1991);N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994);N. A. Riza, “25-Channel nematic liquid crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995);N. A. Riza, N. Madamopoulos, “High signal-to-noise ratio birefringence-compensated optical delay line based on a noise-reduction scheme,” Opt. Lett. 20, 2351–2353 (1995).
[CrossRef] [PubMed]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware compressive fiber-optic true time delay steering system for phased array antennas,” Appl. Opt. 33, 8173–8185 (1994).
[CrossRef] [PubMed]

D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996).
[CrossRef] [PubMed]

R. Lundin, “Dispersion flattening in a W fiber,” Appl. Opt. 33, 1011–1014 (1994).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. T. Johns, D. A. Norton, C. W. Keefer, R. Erdmann, R. A. Soref, “Variable time delay of microwave signals using high dispersion fibre,” Electron. Lett. 29, 555–556 (1993).
[CrossRef]

IEEE Microwave Guid. Wave Lett. (1)

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guid. Wave Lett. 5, 414–416 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Frankel, R. D. Esman, M. G. Parent, “Array transmitter/receiver controlled by a true time-delay fiber-optic beamformer,” IEEE Photon. Technol. Lett. 7, 1216–1218 (1995).
[CrossRef]

S. P. Survaiya, R. K. Shevgaonkar, “Design of subpicosecond dispersion-flattened fibers,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, (1994).

J. Lightwave Technol. (1)

W. Ng, A. A. Waltson, G. L. Targoran, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Opt. Commun. (1)

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Other (14)

L. J. Lembo, T. Holcomb, M. Wickham, P. Wisseman, J. C. Brock, “Low loss fiber optic time-delay element for phased-array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas IV, B. M. Hendrickson, ed., Proc. SPIE2155, (1994).

N. A. Riza, “Maximum hardware compression reversible photonic beamformer for wideband phased array systems,” paper presented at the Optical Society of America Annual Meeting, 20–25 October 1996, Rochester, N.Y., paper ThQQ6; N. A. Riza, N. Madapoulous, “Ternary switched photonic delay lines for rf and microwave array signal processing,” paper presented at the Optical Society of America Annual Meeting, 20–25 October 1996, Rochester, N.Y., paper ThQQ7; N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).

C. Hills, Global Fiber Optics, Mississauga, Ontario, Canada (personal communication, 19June1996).

Model SMF-28 Single-mode optical fiber (Corning Inc., Corning, New York, 1996).

M. Onishi, H. Kanamori, T. Kato, M. Nishimura, “Optimization of dispersion-compensating fibers considering self-phase modulation suppression,” in Optical Fiber Communication Conference (OFC), Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 200–201.

Integrated Photonics Research, Vol. 7 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996).

N. A. Riza, N. Madamopoulos, “Phased array radar control using ferroelectric liquid crystal devices,” in LEOS ’96 Conference Proceedings: Ninth Annual Meeting (IEEE-Lasers and Electro-Optics Society, Boston, Mass., 1996), Vol. 2, paper WG2, pp. 52–53.

Displaytech, Inc., Displaytech Shutters User’s Manual, Version 1.1 (Displaytech, Inc., Boulder, Colo., February1996).

C. Crandall, Displaytech, Inc., Boulder, Colo. (personal communication, 23February1996).

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

D. A. Dish, David Sarnoff Research Center, Princeton, N.J. (personal communication, 25November1996).

Photonic Integration Research, Inc., Periodical No. 11, Columbus, Oh., September1996.

K. Brundin, 3M Specialty Optical Fibers, West Haven, Conn. (personal communication, 12June1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the three-digit ternary optical layout switched PDL with a list showing the possible delay settings. MSD, most significant digit; LSD, least significant digit. Upper setting example (e.g.,) indicated with an arrow: 8τ = 0τ32 + 2τ31 + 2τ30 = 0τ + 6τ + 2τ. Lower setting example: 25τ = 2τ32 + 2τ31 + 1τ30 = 18τ + 6τ + 1τ.

Fig. 2
Fig. 2

Top views of (a) a single stage of a PBS-based PDL ternary architecture, and (b) a single stage of a TBS-based PDL ternary architecture. PBS, cube polarizing beam splitter; L’s, lenses; M’s, mirrors; SA’s, switching arrays; P’s, polarizer.

Fig. 3
Fig. 3

Diagrams of a multichannel, fiber-delay, ternary transmissive PDL: (a) top view of the first stage of the PDL and (b) 3-D view of the PDL. PBS, cube polarizing beam splitter.

Fig. 4
Fig. 4

Geometry of a 2-D phased-array antenna that is mechanically steered for scanning the azimuth and electronically steered for scanning height. T/R, transmit–receive; DEMUX, demultiplexing; MUX, multiplexing.

Fig. 5
Fig. 5

Basic novel CREOL wavelength-multiplexed (λ-MUX) reversible, photonic control system for 1-D steered phased-array antennas with a single physical channel, F-digit, switched, wavelength-dependent (λ-dependent) PDL in cascade with a wavelength-independent, G-digit, switched, bias PDL with multiple physical channels. The wavelength-dependent PDL is either dispersive fiber based or fiber grating based. Tx, transmit mode; Rx, receive mode; DEMUX, demultiplexing; MUX, multiplexing.

Fig. 6
Fig. 6

Top views of single stages of single physical channel, dispersive-fiber, ternary PDL architectures: (a) transmissive, TBS based with dispersive PM fibers and (b) reflective, PBS based with a dispersive non-PM fiber. ARM1–ARM3, arms 1–3.

Fig. 7
Fig. 7

Top view of a single-stage module, PBS-based, single physical channel, fiber-grating, PM-fiber, ternary PDL architecture. QWP, quarter-wave plate.

Fig. 8
Fig. 8

Optoelectronic transmit–receive modules used in our wavelength-multiplexing photonic control systems: (a) controller and (b) antenna element. OEIC, optoelectronic integrated circuit; MMIC, monolithic microwave integrated circuit; RIN, relative-intensity noise.

Fig. 9
Fig. 9

CREOL novel wavelength-multiplexing reversible photonic control system for independent control of the x- and y-axis scans for 2-D beam steering of phased-array antennas by use of a single physical channel, wavelength-dependent, ternary PDL and a multichannel, wavelength-independent, ternary PDL.

Fig. 10
Fig. 10

Diagram of a 2-D phased-array antenna partitioned into 2-D subarrays. The antenna is divided into H subarrays, with each subarray containing M × N elements. Subarray uv: Suv. Antenna element: Amnuv, where m = 1, 2, …, M; n = 1, 2, …, N; u = 1, 2, …, I; and v = 1, 2, …, J.

Fig. 11
Fig. 11

CREOL novel wavelength-multiplexed, reversible, photonic control system for 2-D beam steering of phased-array antennas by use of 2-D subarray partitioning: (a) controller site and (b) antenna site.

Fig. 12
Fig. 12

Plot showing the calculated absolute values (|Time Delay|) of the even time delays 2τ, 4τ, …, 26τ of the single-channel, dispersive-fiber PDL for 10 wavelengths with a spacing of 1-nm intervals. The dispersion of the fiber is -134 ps/(km nm) at 1550 nm, and the fiber increment is 15 m. Note that, because the fiber has negative dispersion, the long wavelengths travel faster in the fiber, thus obtaining shorter time delays than do the short wavelengths.

Fig. 13
Fig. 13

Plot of the calculated optical gain variation across a 40-nm optical bandwidth for the wavelength-multiplexed optical signals that pass through a FLC device polarization rotator designed for a 1310-nm center frequency. Both the 3-dB plot (inset) and the high-resolution, high-detail plot are shown and indicate essentially no optical signal variation across the wavelength bandwidth.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

τmθ=nλmLθc,
Δτmθ=τmθ-τ1θ=LθDλm-λ1=LθDΔλm.
τvθ=Lvθc,
τmvθ=τmθ+τvθ,
τMJθ=τMθ+τJθ,
τmα=nλmLαc,
τnθ=Lnθc,
τmnα, θ=τmα+τnθ,
τmnα, θ=τmα+τnθ.
τmnuvα, θ=τmnα, θ+τuvα, θ=τmα+τnθ+τuvα, θ.
Γλ=2πλΔnd,
Δnλ=0.142-40.1λ+19692.5λ2.
W=121-111×exp-jΓ/211expjΓ/21211-11=cosΓ/2-j sinΓ/2-j sinΓ/2cosΓ/2.
E=cosΓ/2-j sinΓ/2-j sinΓ/2cosΓ/2 10=cosΓ/2-j sinΓ/2,
Eout=0001 cosΓ/2-j sinΓ/2=0-j sinΓ/2,
Iout=EoutEout*=sin2Γ/2.
Iout=sin2π/2=1,
ΔI=1-sin2Γ/2.

Metrics