Abstract

Absolute fluorescence cross sections for Bacillus subtilis and B. cereus bacterial spores as both aqueous suspensions and aerosols were measured at a number of excitation wavelengths between 228 and 303 nm. The fluorescence was spectrally resolved at each excitation wavelength. We found that the optimum excitation wavelength for spore fluorescence is between 270 and 280 nm. The fluorescence cross section for aqueous suspensions is four times larger than for dry aerosols when measured under similar conditions. Measurements on wet aerosols showed an increase in fluorescence cross section over dry aerosols, indicating an enhancement of the fluorescence when the bacterial spores are wet. Mie scattering cross sections at 90° to the direction of the incident radiation and extinction cross sections as a function of wavelength for B. subtilis suspensions and fluorescence cross sections for tryptophan are also reported.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Shelly, J. M. Quarles, I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127–1132 (1960).
  2. D. C. Shelly, J. M. Quarles, I. M. Warner, “Multiparameter approach to the “fingerprint” of fluorescent Pseudomonas,” Clin. Chem. 26, 1127–1132 (1960).
  3. J. Oblanas, D. Ross, V. Simmon, F. L. Ludwig, M. Anbar, “Optical techniques for the remote detection of biological aerosols,” (SRI International, Menlo Park, Calif., 1974).
  4. W. B. Grant, Optical Bases for Remote Biological Aerosol Detection, (SRI International, Menlo Park, Calif., 1977).
  5. W. B. Grant, C. L. Witham, Remote Biological Aerosol Detection, (SRI International, Menlo Park, Calif., 1978).
  6. W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).
  7. J. T. Coburn, F. E. Lytel, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
    [CrossRef]
  8. T. M. Rossi, I. M. Warner, “Bacterial identification using fluorescence spectroscopy,” in Instrumental Methods for Rapid Microbiological Analysis, W. H. Nelson, ed. (VCH Publishers, New York, 1985), pp. 1–50.
  9. R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, D. Psaras, J. F. Tanguay, S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86–90 (1986).
    [CrossRef]
  10. C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
    [PubMed]
  11. R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, J. F. Tanguay, S. L. Suib, “The steady-state and decay characteristics of primary fluorescence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987).
    [CrossRef]
  12. L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).
  13. B. V. Bronk, L. Reinisch, “Variability of steady state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
    [CrossRef]
  14. R. Manoharan, E. Ghiamati, S. Chadna, W. H. Nelson, J. F. Sperry, “Effect of cultural conditions of deep UV resonance Raman spectra of bacteria,” Appl. Spectrosc. 47, 2145–2150 (1993).
    [CrossRef]
  15. S. A. Glazier, H. H. Weetall, “Autofluorescence detection of Escherichia coli on silver membrane filters,” J. Microbiol. Methods 20, 23–27 (1994).
    [CrossRef]
  16. M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
    [CrossRef] [PubMed]
  17. J. A. Werkhaven, L. Reinisch, M. Sorrel, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
    [CrossRef] [PubMed]
  18. W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers-1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.
  19. G. W. Faris, R. A. Copeland, “Measurement of the wavelength dependence of the Raman cross section for liquid water,” submitted to Appl. Opt.
  20. E. P. Ippen, C. V. Shank, A. Dienes, “Rapid photobleaching of organic laser dyes in continuously operated devices,” IEEE J. Quantum Electron. 7, 178–179 (1971).
    [CrossRef]
  21. D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem. 17, 303–390 (1962).
    [CrossRef]
  22. F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 65, 476–482 (1957).
    [PubMed]
  23. R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett. 1, 35–42 (1967).
    [CrossRef]
  24. R. F. Chen, “Fluorescence of proteins and peptides,” in Practical Fluorescence, 2nd ed., G. G. Guilbalt, ed. (Marcel Dekker, New York, 1990), p. 621.
  25. W. G. Murrell, “Chemical composition of spores and spore structures,” in The Bacterial Spore, G. W. Gould, A. Hurst, eds. (Academic, London, 1969), Chap. 7.
  26. T. C. Beaman, J. T. Greenamyre, T. R. Corner, H. S. Pankratz, P. Gerhardt, “Bacterial spore heat resistance correlated with water content, wet density, and protoplast sporoplast colume ratio,” J. Bacteriol. 150, 870–877 (1982).
    [PubMed]
  27. A. D. Hitchins, G. W. Gould, A. Hurst, “The swelling of bacterial spores during germination and outgrowth,” J. Gen. Microbiol. 30, 445–453 (1963).
    [CrossRef] [PubMed]
  28. W. G. Murrell, A. D. Warth, “Composition and heat resistance of bacterial spores,” in Spores III: A Symposium, L. L. Campbell, H. O. Halvorson, eds. (American Society for Microbiology, Allerton Park, Ill., 1964), extracted from Figs. 9 and 10.
  29. R. Sherrer, V. E. Shull, “Microincineration and elemental x-ray microanalysis of single B. cereus spores,” Can. J. Microbiol. 33, 304–313 (1987).
    [CrossRef]
  30. J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by UV spectrum of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
    [CrossRef] [PubMed]
  31. T. Barela, D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976).
    [CrossRef] [PubMed]
  32. W. Ma, K. J. Hwang, V. Lee, “A fluorescence quenching method for estimating chelate conjugated macromolecules,” Pharmaceutical Research 10 (2) , 204–207 (1993).
    [CrossRef]

1994 (3)

S. A. Glazier, H. H. Weetall, “Autofluorescence detection of Escherichia coli on silver membrane filters,” J. Microbiol. Methods 20, 23–27 (1994).
[CrossRef]

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

J. A. Werkhaven, L. Reinisch, M. Sorrel, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

1993 (3)

1991 (1)

L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).

1987 (3)

C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
[PubMed]

R. Sherrer, V. E. Shull, “Microincineration and elemental x-ray microanalysis of single B. cereus spores,” Can. J. Microbiol. 33, 304–313 (1987).
[CrossRef]

R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, J. F. Tanguay, S. L. Suib, “The steady-state and decay characteristics of primary fluorescence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987).
[CrossRef]

1986 (1)

1985 (1)

J. T. Coburn, F. E. Lytel, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
[CrossRef]

1982 (1)

T. C. Beaman, J. T. Greenamyre, T. R. Corner, H. S. Pankratz, P. Gerhardt, “Bacterial spore heat resistance correlated with water content, wet density, and protoplast sporoplast colume ratio,” J. Bacteriol. 150, 870–877 (1982).
[PubMed]

1976 (1)

T. Barela, D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976).
[CrossRef] [PubMed]

1971 (1)

E. P. Ippen, C. V. Shank, A. Dienes, “Rapid photobleaching of organic laser dyes in continuously operated devices,” IEEE J. Quantum Electron. 7, 178–179 (1971).
[CrossRef]

1967 (2)

R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett. 1, 35–42 (1967).
[CrossRef]

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by UV spectrum of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
[CrossRef] [PubMed]

1963 (1)

A. D. Hitchins, G. W. Gould, A. Hurst, “The swelling of bacterial spores during germination and outgrowth,” J. Gen. Microbiol. 30, 445–453 (1963).
[CrossRef] [PubMed]

1962 (1)

D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem. 17, 303–390 (1962).
[CrossRef]

1960 (2)

D. C. Shelly, J. M. Quarles, I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127–1132 (1960).

D. C. Shelly, J. M. Quarles, I. M. Warner, “Multiparameter approach to the “fingerprint” of fluorescent Pseudomonas,” Clin. Chem. 26, 1127–1132 (1960).

1957 (1)

F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 65, 476–482 (1957).
[PubMed]

Anbar, M.

J. Oblanas, D. Ross, V. Simmon, F. L. Ludwig, M. Anbar, “Optical techniques for the remote detection of biological aerosols,” (SRI International, Menlo Park, Calif., 1974).

Barela, T.

T. Barela, D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976).
[CrossRef] [PubMed]

Beaman, T. C.

T. C. Beaman, J. T. Greenamyre, T. R. Corner, H. S. Pankratz, P. Gerhardt, “Bacterial spore heat resistance correlated with water content, wet density, and protoplast sporoplast colume ratio,” J. Bacteriol. 150, 870–877 (1982).
[PubMed]

Bischel, W. K.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers-1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Black, G.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers-1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

Brackman, E. J.

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Britt, D.

Bronk, B. V.

B. V. Bronk, L. Reinisch, “Variability of steady state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
[CrossRef]

L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).

Burns, A. A.

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Burns, P. L.

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Carlone, G. M.

C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
[PubMed]

Chadna, S.

Chen, R. F.

R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett. 1, 35–42 (1967).
[CrossRef]

R. F. Chen, “Fluorescence of proteins and peptides,” in Practical Fluorescence, 2nd ed., G. G. Guilbalt, ed. (Marcel Dekker, New York, 1990), p. 621.

Coburn, J. T.

J. T. Coburn, F. E. Lytel, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
[CrossRef]

Copeland, R. A.

G. W. Faris, R. A. Copeland, “Measurement of the wavelength dependence of the Raman cross section for liquid water,” submitted to Appl. Opt.

Corner, T. R.

T. C. Beaman, J. T. Greenamyre, T. R. Corner, H. S. Pankratz, P. Gerhardt, “Bacterial spore heat resistance correlated with water content, wet density, and protoplast sporoplast colume ratio,” J. Bacteriol. 150, 870–877 (1982).
[PubMed]

Dalterio, R. A.

Depp, J. G.

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Dienes, A.

E. P. Ippen, C. V. Shank, A. Dienes, “Rapid photobleaching of organic laser dyes in continuously operated devices,” IEEE J. Quantum Electron. 7, 178–179 (1971).
[CrossRef]

Eckstrom, D. J.

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Faris, G. W.

G. W. Faris, R. A. Copeland, “Measurement of the wavelength dependence of the Raman cross section for liquid water,” submitted to Appl. Opt.

Gerhardt, P.

T. C. Beaman, J. T. Greenamyre, T. R. Corner, H. S. Pankratz, P. Gerhardt, “Bacterial spore heat resistance correlated with water content, wet density, and protoplast sporoplast colume ratio,” J. Bacteriol. 150, 870–877 (1982).
[PubMed]

Ghiamati, E.

Glazier, S. A.

S. A. Glazier, H. H. Weetall, “Autofluorescence detection of Escherichia coli on silver membrane filters,” J. Microbiol. Methods 20, 23–27 (1994).
[CrossRef]

Gould, G. W.

A. D. Hitchins, G. W. Gould, A. Hurst, “The swelling of bacterial spores during germination and outgrowth,” J. Gen. Microbiol. 30, 445–453 (1963).
[CrossRef] [PubMed]

Grant, W. B.

W. B. Grant, C. L. Witham, Remote Biological Aerosol Detection, (SRI International, Menlo Park, Calif., 1978).

W. B. Grant, Optical Bases for Remote Biological Aerosol Detection, (SRI International, Menlo Park, Calif., 1977).

Greenamyre, J. T.

T. C. Beaman, J. T. Greenamyre, T. R. Corner, H. S. Pankratz, P. Gerhardt, “Bacterial spore heat resistance correlated with water content, wet density, and protoplast sporoplast colume ratio,” J. Bacteriol. 150, 870–877 (1982).
[PubMed]

Hawley, J. G.

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Hitchins, A. D.

A. D. Hitchins, G. W. Gould, A. Hurst, “The swelling of bacterial spores during germination and outgrowth,” J. Gen. Microbiol. 30, 445–453 (1963).
[CrossRef] [PubMed]

Hollis, D.

C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
[PubMed]

Huber, D. M.

J. T. Coburn, F. E. Lytel, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
[CrossRef]

Hurst, A.

A. D. Hitchins, G. W. Gould, A. Hurst, “The swelling of bacterial spores during germination and outgrowth,” J. Gen. Microbiol. 30, 445–453 (1963).
[CrossRef] [PubMed]

Hwang, K. J.

W. Ma, K. J. Hwang, V. Lee, “A fluorescence quenching method for estimating chelate conjugated macromolecules,” Pharmaceutical Research 10 (2) , 204–207 (1993).
[CrossRef]

Ippen, E. P.

E. P. Ippen, C. V. Shank, A. Dienes, “Rapid photobleaching of organic laser dyes in continuously operated devices,” IEEE J. Quantum Electron. 7, 178–179 (1971).
[CrossRef]

Lee, V.

W. Ma, K. J. Hwang, V. Lee, “A fluorescence quenching method for estimating chelate conjugated macromolecules,” Pharmaceutical Research 10 (2) , 204–207 (1993).
[CrossRef]

Lewis, J. C.

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by UV spectrum of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
[CrossRef] [PubMed]

Ludwig, F. L.

J. Oblanas, D. Ross, V. Simmon, F. L. Ludwig, M. Anbar, “Optical techniques for the remote detection of biological aerosols,” (SRI International, Menlo Park, Calif., 1974).

Lytel, F. E.

J. T. Coburn, F. E. Lytel, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
[CrossRef]

Ma, W.

W. Ma, K. J. Hwang, V. Lee, “A fluorescence quenching method for estimating chelate conjugated macromolecules,” Pharmaceutical Research 10 (2) , 204–207 (1993).
[CrossRef]

Manoharan, R.

Moss, C. W.

C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
[PubMed]

Murrell, W. G.

W. G. Murrell, “Chemical composition of spores and spore structures,” in The Bacterial Spore, G. W. Gould, A. Hurst, eds. (Academic, London, 1969), Chap. 7.

W. G. Murrell, A. D. Warth, “Composition and heat resistance of bacterial spores,” in Spores III: A Symposium, L. L. Campbell, H. O. Halvorson, eds. (American Society for Microbiology, Allerton Park, Ill., 1964), extracted from Figs. 9 and 10.

Nelson, W. H.

Oblanas, J.

J. Oblanas, D. Ross, V. Simmon, F. L. Ludwig, M. Anbar, “Optical techniques for the remote detection of biological aerosols,” (SRI International, Menlo Park, Calif., 1974).

Ossoff, R. H.

J. A. Werkhaven, L. Reinisch, M. Sorrel, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

Pankratz, H. S.

T. C. Beaman, J. T. Greenamyre, T. R. Corner, H. S. Pankratz, P. Gerhardt, “Bacterial spore heat resistance correlated with water content, wet density, and protoplast sporoplast colume ratio,” J. Bacteriol. 150, 870–877 (1982).
[PubMed]

Patonay, G.

C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
[PubMed]

Pau, C.-P.

C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
[PubMed]

Plikaytis, B. D.

C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
[PubMed]

Psaras, D.

Quarles, J. M.

D. C. Shelly, J. M. Quarles, I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127–1132 (1960).

D. C. Shelly, J. M. Quarles, I. M. Warner, “Multiparameter approach to the “fingerprint” of fluorescent Pseudomonas,” Clin. Chem. 26, 1127–1132 (1960).

Reinisch, L.

J. A. Werkhaven, L. Reinisch, M. Sorrel, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

B. V. Bronk, L. Reinisch, “Variability of steady state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
[CrossRef]

L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).

Rewrek, R. T.

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Ross, D.

J. Oblanas, D. Ross, V. Simmon, F. L. Ludwig, M. Anbar, “Optical techniques for the remote detection of biological aerosols,” (SRI International, Menlo Park, Calif., 1974).

Rossi, T. M.

T. M. Rossi, I. M. Warner, “Bacterial identification using fluorescence spectroscopy,” in Instrumental Methods for Rapid Microbiological Analysis, W. H. Nelson, ed. (VCH Publishers, New York, 1985), pp. 1–50.

Shank, C. V.

E. P. Ippen, C. V. Shank, A. Dienes, “Rapid photobleaching of organic laser dyes in continuously operated devices,” IEEE J. Quantum Electron. 7, 178–179 (1971).
[CrossRef]

Shelly, D. C.

D. C. Shelly, J. M. Quarles, I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127–1132 (1960).

D. C. Shelly, J. M. Quarles, I. M. Warner, “Multiparameter approach to the “fingerprint” of fluorescent Pseudomonas,” Clin. Chem. 26, 1127–1132 (1960).

Sherrer, R.

R. Sherrer, V. E. Shull, “Microincineration and elemental x-ray microanalysis of single B. cereus spores,” Can. J. Microbiol. 33, 304–313 (1987).
[CrossRef]

Sherry, D.

T. Barela, D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976).
[CrossRef] [PubMed]

Shull, V. E.

R. Sherrer, V. E. Shull, “Microincineration and elemental x-ray microanalysis of single B. cereus spores,” Can. J. Microbiol. 33, 304–313 (1987).
[CrossRef]

Simmon, V.

J. Oblanas, D. Ross, V. Simmon, F. L. Ludwig, M. Anbar, “Optical techniques for the remote detection of biological aerosols,” (SRI International, Menlo Park, Calif., 1974).

Sorrel, M.

J. A. Werkhaven, L. Reinisch, M. Sorrel, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Sorrell, M. J.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

Sperry, J.

Sperry, J. F.

Stuler, H. E.

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Suib, S. L.

Tanguay, J. F.

Teale, F. W. J.

F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 65, 476–482 (1957).
[PubMed]

Tribble, J.

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

J. A. Werkhaven, L. Reinisch, M. Sorrel, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Van de Merwe, W. P.

L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).

Warner, I. M.

C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
[PubMed]

D. C. Shelly, J. M. Quarles, I. M. Warner, “Multiparameter approach to the “fingerprint” of fluorescent Pseudomonas,” Clin. Chem. 26, 1127–1132 (1960).

D. C. Shelly, J. M. Quarles, I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127–1132 (1960).

T. M. Rossi, I. M. Warner, “Bacterial identification using fluorescence spectroscopy,” in Instrumental Methods for Rapid Microbiological Analysis, W. H. Nelson, ed. (VCH Publishers, New York, 1985), pp. 1–50.

Warth, A. D.

W. G. Murrell, A. D. Warth, “Composition and heat resistance of bacterial spores,” in Spores III: A Symposium, L. L. Campbell, H. O. Halvorson, eds. (American Society for Microbiology, Allerton Park, Ill., 1964), extracted from Figs. 9 and 10.

Weber, G.

F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 65, 476–482 (1957).
[PubMed]

Weetall, H. H.

S. A. Glazier, H. H. Weetall, “Autofluorescence detection of Escherichia coli on silver membrane filters,” J. Microbiol. Methods 20, 23–27 (1994).
[CrossRef]

Werkhaven, J. A.

J. A. Werkhaven, L. Reinisch, M. Sorrel, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

Wetlaufer, D. B.

D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem. 17, 303–390 (1962).
[CrossRef]

Wilson, M. W.

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Witham, C. L.

W. B. Grant, C. L. Witham, Remote Biological Aerosol Detection, (SRI International, Menlo Park, Calif., 1978).

Adv. Protein Chem. (1)

D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem. 17, 303–390 (1962).
[CrossRef]

Anal. Biochem. (2)

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by UV spectrum of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967).
[CrossRef] [PubMed]

T. Barela, D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976).
[CrossRef] [PubMed]

Anal. Chem. (1)

J. T. Coburn, F. E. Lytel, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985).
[CrossRef]

Anal. Lett. (1)

R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett. 1, 35–42 (1967).
[CrossRef]

Appl. Spectrosc. (4)

Biochem. J. (1)

F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 65, 476–482 (1957).
[PubMed]

Biophys. J. (1)

L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).

Can. J. Microbiol. (1)

R. Sherrer, V. E. Shull, “Microincineration and elemental x-ray microanalysis of single B. cereus spores,” Can. J. Microbiol. 33, 304–313 (1987).
[CrossRef]

Clin. Chem. (3)

D. C. Shelly, J. M. Quarles, I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127–1132 (1960).

D. C. Shelly, J. M. Quarles, I. M. Warner, “Multiparameter approach to the “fingerprint” of fluorescent Pseudomonas,” Clin. Chem. 26, 1127–1132 (1960).

C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
[PubMed]

IEEE J. Quantum Electron. (1)

E. P. Ippen, C. V. Shank, A. Dienes, “Rapid photobleaching of organic laser dyes in continuously operated devices,” IEEE J. Quantum Electron. 7, 178–179 (1971).
[CrossRef]

J. Bacteriol. (1)

T. C. Beaman, J. T. Greenamyre, T. R. Corner, H. S. Pankratz, P. Gerhardt, “Bacterial spore heat resistance correlated with water content, wet density, and protoplast sporoplast colume ratio,” J. Bacteriol. 150, 870–877 (1982).
[PubMed]

J. Gen. Microbiol. (1)

A. D. Hitchins, G. W. Gould, A. Hurst, “The swelling of bacterial spores during germination and outgrowth,” J. Gen. Microbiol. 30, 445–453 (1963).
[CrossRef] [PubMed]

J. Microbiol. Methods (1)

S. A. Glazier, H. H. Weetall, “Autofluorescence detection of Escherichia coli on silver membrane filters,” J. Microbiol. Methods 20, 23–27 (1994).
[CrossRef]

Laryngoscope (1)

J. A. Werkhaven, L. Reinisch, M. Sorrel, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994).
[CrossRef] [PubMed]

Pharmaceutical Research (1)

W. Ma, K. J. Hwang, V. Lee, “A fluorescence quenching method for estimating chelate conjugated macromolecules,” Pharmaceutical Research 10 (2) , 204–207 (1993).
[CrossRef]

Other (10)

T. M. Rossi, I. M. Warner, “Bacterial identification using fluorescence spectroscopy,” in Instrumental Methods for Rapid Microbiological Analysis, W. H. Nelson, ed. (VCH Publishers, New York, 1985), pp. 1–50.

W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers-1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.

G. W. Faris, R. A. Copeland, “Measurement of the wavelength dependence of the Raman cross section for liquid water,” submitted to Appl. Opt.

R. F. Chen, “Fluorescence of proteins and peptides,” in Practical Fluorescence, 2nd ed., G. G. Guilbalt, ed. (Marcel Dekker, New York, 1990), p. 621.

W. G. Murrell, “Chemical composition of spores and spore structures,” in The Bacterial Spore, G. W. Gould, A. Hurst, eds. (Academic, London, 1969), Chap. 7.

W. G. Murrell, A. D. Warth, “Composition and heat resistance of bacterial spores,” in Spores III: A Symposium, L. L. Campbell, H. O. Halvorson, eds. (American Society for Microbiology, Allerton Park, Ill., 1964), extracted from Figs. 9 and 10.

J. Oblanas, D. Ross, V. Simmon, F. L. Ludwig, M. Anbar, “Optical techniques for the remote detection of biological aerosols,” (SRI International, Menlo Park, Calif., 1974).

W. B. Grant, Optical Bases for Remote Biological Aerosol Detection, (SRI International, Menlo Park, Calif., 1977).

W. B. Grant, C. L. Witham, Remote Biological Aerosol Detection, (SRI International, Menlo Park, Calif., 1978).

W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical experimental arrangement for fluorescence and scattering measurements. Spectrometer slit height is 10 mm.

Fig. 2
Fig. 2

System for preparation of dry aerosols.

Fig. 3
Fig. 3

Example of the fit of a Gaussian profile to the water Raman scattering peak for an aqueous sample.

Fig. 4
Fig. 4

Example of the fit of Gaussian profiles to oxygen and nitrogen Raman scattering peaks for an aerosol sample.

Fig. 5
Fig. 5

Absolute fluorescence cross sections for aqueous suspensions of four samples. All samples were excited by 280-nm light except for B. subtilis sample 2, which was excited by 283-nm light.

Fig. 6
Fig. 6

Absolute fluorescence cross sections for aqueous suspensions of B. subtilis sample 2 as a function of excitation wavelength.

Fig. 7
Fig. 7

Absolute fluorescence cross sections for aqueous suspensions of B. cereus as a function of excitation wavelength. These measurements were affected by sample clumping.

Fig. 8
Fig. 8

Comparison of fluorescence cross sections for wet and dry aerosols and an aqueous suspension of B. subtilis sample 2, taken using 270-nm excitation light.

Fig. 9
Fig. 9

Absolute fluorescence cross sections for aqueous solutions of tryptophan as a function of excitation wavelength.

Fig. 10
Fig. 10

Extinction cross section for B. subtilis sample 2 as a function of wavelength.

Tables (2)

Tables Icon

Table 1 Microscope and Viable Count Dataa

Tables Icon

Table 2 Peak Absolute Fluorescence Cross Sections for Bacillus Spores

Metrics