Abstract

Predictions from Mie theory regarding the wavelength dependence of scattering in tissue from the near UV to the near IR are discussed and compared with experiments on tissue phantoms. For large fiber separations it is shown that rapid, simultaneous measurements of the elastic scatter signal for several fiber separations can yield the absorption coefficient and reduced scattering coefficient. With this information, the size of the scattering particles can be estimated, and this is done for Intralipid. Measurements made at smaller source detector separations support Mie theory calculations, demonstrating that the sensitivity of elastic scatter measurements to morphological features, such as scatterer size, is enhanced when the distance between the source and detector fibers is small.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wu, M. S. Feld, R. P. Rava, “Analytic model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
    [CrossRef] [PubMed]
  2. E. M. Sevick, C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994).
    [CrossRef]
  3. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
    [CrossRef] [PubMed]
  4. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
    [CrossRef] [PubMed]
  5. S. A. Ahmed, Z.-W. Zang, K. M. Yoo, R. R. Alfano, “Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media,” Appl. Opt. 33, 2746–2750 (1994).
    [CrossRef] [PubMed]
  6. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J.-F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopically resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
    [CrossRef] [PubMed]
  7. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of chromophores in a strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213 (1994).
    [CrossRef] [PubMed]
  8. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
    [CrossRef] [PubMed]
  9. T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, R. Sneed, “In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices,” Lasers Surg. Med. 16, 41–47 (1995).
    [CrossRef] [PubMed]
  10. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
    [CrossRef] [PubMed]
  11. N. Ramanujan, M. F. Mitchell, S. Warren, S. Thomsen, E. Silva, R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Nat. Acad. Sci. U.S.A. 91(21) , 10193–10197 (1994).
    [CrossRef]
  12. The spheres are actually a mixture of polystyrene, polystyrene divingl-benzene, polyvinyltoluene, and/or butadiene.
  13. G. C. Salzman, “Light scattering analysis of single cells,” in Cell Analysis, N. Catsimpoolas, ed. (Plenum, New York, 1982), Vol. 1, pp. 111–143.
    [CrossRef]
  14. C. Lenter, ed., Geigy Scientific Tables (Ciba-Geigy, Basle, 1984), Vol. 3, p. 69.
  15. A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys J. 14, 439–453 (1974).
    [CrossRef] [PubMed]
  16. R. C. Weast, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1984), p. D-221.
  17. S. Fujime, M. Takasaki-Oshito, S. Miyamoto, “Dynamic light scattering from polydisperse suspensions of large spheres,” Biophys. J. 54, 1179–1184 (1988).
    [CrossRef] [PubMed]
  18. This is the definition of the size parameter used by Bohren, Huffman (Ref. 19, p. 100). The definition x = 2πr/λ is also found frequently in the literature.
  19. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  20. R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18, 585–588 (1979).
    [CrossRef] [PubMed]
  21. M. Kerker, D. D. Cooke, H. Chew, P. J. McNulty, “Light scattering by structured spheres,” J. Opt. Soc. Am. 68, 592–601 (1978).
    [CrossRef]
  22. R. Graaff, J. G. Aarnoose, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
    [CrossRef] [PubMed]
  23. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
    [CrossRef] [PubMed]
  24. B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993).
    [CrossRef] [PubMed]
  25. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  26. R. C. Haskell, L. O. Svaasand, T-C. Feng, M. S. McAdams, B. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  27. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [CrossRef] [PubMed]
  28. H. J. van Staveren, C. J. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  29. J. Boyer, J. R. Mourant, I. J. Bigio, “Theoretical and experimental investigations of elastic scattering spectroscopy as a potential diagnostic for tissue pathologies,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of 1994 OSA Proceedings (Optical Society of America, Washington, D.C., 1994), pp. 265–268.
  30. B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells and tissue,” Anal. Biochem. 227, 351–362 (1995).
    [CrossRef] [PubMed]
  31. H. L. Liu, D. A. Boas, Y. T. Zhang, A. G. Yodh, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
    [CrossRef] [PubMed]
  32. J. R. Mourant, A. H. Hielscher, H. D. Miller, J. S. George, “Broadband monitoring of physiological changes with a continuous light tissue spectrometer,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 37–42.
  33. M. G. Nichols, E. L. Hull, T. H. Foster, “Spatially and spectrally resolved steady-state diffuse reflectance measurements of the optical properties of tissue-simulating phantoms,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 50–58.
  34. J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988).
    [CrossRef] [PubMed]
  35. B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
    [CrossRef] [PubMed]

1996 (1)

1995 (6)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, R. Sneed, “In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices,” Lasers Surg. Med. 16, 41–47 (1995).
[CrossRef] [PubMed]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
[CrossRef] [PubMed]

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells and tissue,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

H. L. Liu, D. A. Boas, Y. T. Zhang, A. G. Yodh, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[CrossRef] [PubMed]

1994 (5)

1993 (4)

1992 (4)

R. Graaff, J. G. Aarnoose, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef] [PubMed]

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

1991 (1)

1988 (2)

S. Fujime, M. Takasaki-Oshito, S. Miyamoto, “Dynamic light scattering from polydisperse suspensions of large spheres,” Biophys. J. 54, 1179–1184 (1988).
[CrossRef] [PubMed]

J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988).
[CrossRef] [PubMed]

1979 (1)

1978 (1)

1974 (1)

A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys J. 14, 439–453 (1974).
[CrossRef] [PubMed]

Aarnoose, J. G.

Ahmed, S. A.

Alfano, R. R.

Andersson-Engels, S.

Barbieri, B.

Bays, R.

Beauvoit, B.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[CrossRef] [PubMed]

Bigio, I. J.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

J. Boyer, J. R. Mourant, I. J. Bigio, “Theoretical and experimental investigations of elastic scattering spectroscopy as a potential diagnostic for tissue pathologies,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of 1994 OSA Proceedings (Optical Society of America, Washington, D.C., 1994), pp. 265–268.

Boas, D. A.

H. L. Liu, D. A. Boas, Y. T. Zhang, A. G. Yodh, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Boyer, J.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

J. Boyer, J. R. Mourant, I. J. Bigio, “Theoretical and experimental investigations of elastic scattering spectroscopy as a potential diagnostic for tissue pathologies,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of 1994 OSA Proceedings (Optical Society of America, Washington, D.C., 1994), pp. 265–268.

Braichotte, D.

Brunsting, A.

A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys J. 14, 439–453 (1974).
[CrossRef] [PubMed]

Buckley, F. P.

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, R. Sneed, “In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices,” Lasers Surg. Med. 16, 41–47 (1995).
[CrossRef] [PubMed]

Burch, C. L.

Cerussi, A. E.

Chance, B.

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells and tissue,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[CrossRef] [PubMed]

Chew, H.

Compton, C. C.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Conn, R. L.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Cooke, D. D.

de Mul, F. F. M.

Deutsch, T. M.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Fantini, S.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Farris, C.

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, R. Sneed, “In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices,” Lasers Surg. Med. 16, 41–47 (1995).
[CrossRef] [PubMed]

Feld, M. S.

Feng, T-C.

Fishkin, J. B.

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Flotte, T. J.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Foster, T. H.

M. G. Nichols, E. L. Hull, T. H. Foster, “Spatially and spectrally resolved steady-state diffuse reflectance measurements of the optical properties of tissue-simulating phantoms,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 50–58.

Franceschini, M. A.

Frisoli, J. K.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Fujime, S.

S. Fujime, M. Takasaki-Oshito, S. Miyamoto, “Dynamic light scattering from polydisperse suspensions of large spheres,” Biophys. J. 54, 1179–1184 (1988).
[CrossRef] [PubMed]

George, J. S.

J. R. Mourant, A. H. Hielscher, H. D. Miller, J. S. George, “Broadband monitoring of physiological changes with a continuous light tissue spectrometer,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 37–42.

Graaff, R.

Gratton, E.

Greve, J.

Haskell, R. C.

Hielscher, A. H.

J. R. Mourant, A. H. Hielscher, H. D. Miller, J. S. George, “Broadband monitoring of physiological changes with a continuous light tissue spectrometer,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 37–42.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Hull, E. L.

M. G. Nichols, E. L. Hull, T. H. Foster, “Spatially and spectrally resolved steady-state diffuse reflectance measurements of the optical properties of tissue-simulating phantoms,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 50–58.

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Johnson, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Kang, K.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[CrossRef] [PubMed]

Kaplan, P. D.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[CrossRef] [PubMed]

Kerker, M.

Kitai, T.

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells and tissue,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

Koelink, M. H.

Liu, H.

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells and tissue,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[CrossRef] [PubMed]

Liu, H. L.

H. L. Liu, D. A. Boas, Y. T. Zhang, A. G. Yodh, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[CrossRef] [PubMed]

McAdams, M. S.

McNulty, P. J.

Meyer, R. A.

Miller, H. D.

J. R. Mourant, A. H. Hielscher, H. D. Miller, J. S. George, “Broadband monitoring of physiological changes with a continuous light tissue spectrometer,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 37–42.

Mitchell, M. F.

N. Ramanujan, M. F. Mitchell, S. Warren, S. Thomsen, E. Silva, R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Nat. Acad. Sci. U.S.A. 91(21) , 10193–10197 (1994).
[CrossRef]

Miwa, M.

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[CrossRef] [PubMed]

Miyamoto, S.

S. Fujime, M. Takasaki-Oshito, S. Miyamoto, “Dynamic light scattering from polydisperse suspensions of large spheres,” Biophys. J. 54, 1179–1184 (1988).
[CrossRef] [PubMed]

Moes, C. J.

Monnier, P.

Mourant, J. R.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

J. R. Mourant, A. H. Hielscher, H. D. Miller, J. S. George, “Broadband monitoring of physiological changes with a continuous light tissue spectrometer,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 37–42.

J. Boyer, J. R. Mourant, I. J. Bigio, “Theoretical and experimental investigations of elastic scattering spectroscopy as a potential diagnostic for tissue pathologies,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of 1994 OSA Proceedings (Optical Society of America, Washington, D.C., 1994), pp. 265–268.

Mullaney, P. F.

A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys J. 14, 439–453 (1974).
[CrossRef] [PubMed]

Nichols, M. G.

M. G. Nichols, E. L. Hull, T. H. Foster, “Spatially and spectrally resolved steady-state diffuse reflectance measurements of the optical properties of tissue-simulating phantoms,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 50–58.

Nishioka, N. S.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Osei, E. K.

Overholt, B. F.

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, R. Sneed, “In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices,” Lasers Surg. Med. 16, 41–47 (1995).
[CrossRef] [PubMed]

Panjehpour, M.

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, R. Sneed, “In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices,” Lasers Surg. Med. 16, 41–47 (1995).
[CrossRef] [PubMed]

Patterson, M. S.

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Prahl, S. A.

Ramanujan, N.

N. Ramanujan, M. F. Mitchell, S. Warren, S. Thomsen, E. Silva, R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Nat. Acad. Sci. U.S.A. 91(21) , 10193–10197 (1994).
[CrossRef]

Rava, R. P.

Richards-Kortum, R.

N. Ramanujan, M. F. Mitchell, S. Warren, S. Thomsen, E. Silva, R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Nat. Acad. Sci. U.S.A. 91(21) , 10193–10197 (1994).
[CrossRef]

Richter, J. M.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Robert, D.

Salzman, G. C.

G. C. Salzman, “Light scattering analysis of single cells,” in Cell Analysis, N. Catsimpoolas, ed. (Plenum, New York, 1982), Vol. 1, pp. 111–143.
[CrossRef]

Savary, J.-F.

Schomacker, K. T.

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Sevick, E. M.

Shepherd, A. P.

Shimada, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

Silva, E.

N. Ramanujan, M. F. Mitchell, S. Warren, S. Thomsen, E. Silva, R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Nat. Acad. Sci. U.S.A. 91(21) , 10193–10197 (1994).
[CrossRef]

Sloot, P. M. A.

Sneed, R.

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, R. Sneed, “In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices,” Lasers Surg. Med. 16, 41–47 (1995).
[CrossRef] [PubMed]

So, P. T. C.

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Steinke, J. M.

Svaasand, L. O.

Takasaki-Oshito, M.

S. Fujime, M. Takasaki-Oshito, S. Miyamoto, “Dynamic light scattering from polydisperse suspensions of large spheres,” Biophys. J. 54, 1179–1184 (1988).
[CrossRef] [PubMed]

Thomsen, S.

N. Ramanujan, M. F. Mitchell, S. Warren, S. Thomsen, E. Silva, R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Nat. Acad. Sci. U.S.A. 91(21) , 10193–10197 (1994).
[CrossRef]

Tromberg, B.

Tromberg, B. J.

Tsay, T.-T.

van den Bergh, H.

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

van Marle, J.

van Staveren, H. J.

Vo-Dinh, T.

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, R. Sneed, “In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices,” Lasers Surg. Med. 16, 41–47 (1995).
[CrossRef] [PubMed]

Wagnieres, G.

Warren, S.

N. Ramanujan, M. F. Mitchell, S. Warren, S. Thomsen, E. Silva, R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Nat. Acad. Sci. U.S.A. 91(21) , 10193–10197 (1994).
[CrossRef]

Wilson, B.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Wu, J.

Yodh, A. G.

H. L. Liu, D. A. Boas, Y. T. Zhang, A. G. Yodh, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[CrossRef] [PubMed]

Yoo, K. M.

Zang, Z.-W.

Zhang, Y.

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells and tissue,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

Zhang, Y. T.

H. L. Liu, D. A. Boas, Y. T. Zhang, A. G. Yodh, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[CrossRef] [PubMed]

Zijp, J. R.

Anal. Biochem. (1)

B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells and tissue,” Anal. Biochem. 227, 351–362 (1995).
[CrossRef] [PubMed]

Appl. Opt. (11)

J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoose, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef] [PubMed]

B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
[CrossRef] [PubMed]

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

S. A. Ahmed, Z.-W. Zang, K. M. Yoo, R. R. Alfano, “Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media,” Appl. Opt. 33, 2746–2750 (1994).
[CrossRef] [PubMed]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J.-F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopically resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of chromophores in a strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213 (1994).
[CrossRef] [PubMed]

J. Wu, M. S. Feld, R. P. Rava, “Analytic model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18, 585–588 (1979).
[CrossRef] [PubMed]

Biophys J. (1)

A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys J. 14, 439–453 (1974).
[CrossRef] [PubMed]

Biophys. J. (1)

S. Fujime, M. Takasaki-Oshito, S. Miyamoto, “Dynamic light scattering from polydisperse suspensions of large spheres,” Biophys. J. 54, 1179–1184 (1988).
[CrossRef] [PubMed]

Cell Biophys. (1)

B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Lasers Surg. Med. (4)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995).
[CrossRef] [PubMed]

T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, R. Sneed, “In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices,” Lasers Surg. Med. 16, 41–47 (1995).
[CrossRef] [PubMed]

K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992).
[CrossRef] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

H. L. Liu, D. A. Boas, Y. T. Zhang, A. G. Yodh, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci. U.S.A. (1)

N. Ramanujan, M. F. Mitchell, S. Warren, S. Thomsen, E. Silva, R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Nat. Acad. Sci. U.S.A. 91(21) , 10193–10197 (1994).
[CrossRef]

Other (9)

The spheres are actually a mixture of polystyrene, polystyrene divingl-benzene, polyvinyltoluene, and/or butadiene.

G. C. Salzman, “Light scattering analysis of single cells,” in Cell Analysis, N. Catsimpoolas, ed. (Plenum, New York, 1982), Vol. 1, pp. 111–143.
[CrossRef]

C. Lenter, ed., Geigy Scientific Tables (Ciba-Geigy, Basle, 1984), Vol. 3, p. 69.

R. C. Weast, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1984), p. D-221.

This is the definition of the size parameter used by Bohren, Huffman (Ref. 19, p. 100). The definition x = 2πr/λ is also found frequently in the literature.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

J. R. Mourant, A. H. Hielscher, H. D. Miller, J. S. George, “Broadband monitoring of physiological changes with a continuous light tissue spectrometer,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 37–42.

M. G. Nichols, E. L. Hull, T. H. Foster, “Spatially and spectrally resolved steady-state diffuse reflectance measurements of the optical properties of tissue-simulating phantoms,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 50–58.

J. Boyer, J. R. Mourant, I. J. Bigio, “Theoretical and experimental investigations of elastic scattering spectroscopy as a potential diagnostic for tissue pathologies,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of 1994 OSA Proceedings (Optical Society of America, Washington, D.C., 1994), pp. 265–268.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Efficiency factor for scattering Q s as a function of wavelength for 0.5- and 3.0-µm-radius spheres. Results are shown for both a sphere refractive index of 1.33 with a medium refractive index of 1.46 (m = 1.098) and for a sphere refractive index of 1.35 with a medium refractive index of 1.40 (m = 1.053).

Fig. 2
Fig. 2

Log(P(θ)) as a function of angle and wavelength for a 0.5-µm sphere. The index of the medium is taken to be 1.33 and the index of the sphere to be 1.46. (At a given wavelength ∫ P(θ) sin θ dθ = 1.)

Fig. 3
Fig. 3

Wavelength dependence of Q s (1 - g) for 0.5 and 3.0-µm-radius spheres. Results are shown for both n s = 1.46 with n m = 1.33 (m = 1.1, x = 4.6–10.5 for the 0.5-µm spheres and x = 27.8–62.7 for the 3.0-µm spheres) and for n s = 1.40 with n m = 1.35 (m = 1.04, x = 4.7–10.6 for the 0.5-µm spheres and x = 28.3–63.6 for the 3.0-µm spheres). The dashed line shows the λ -4 wavelength dependence of scatterers with a size parameter x ≪ 1. (On a log-log plot a λ-n dependence is a straight line.) Each curve has been multiplied by a constant to have a value of 1 at 600 nm.

Fig. 4
Fig. 4

Wavelength dependence of Q s (1 - g) for a wide range of sphere sizes. n s = 1.50 and n m = 1.35. All curves have been normalized to have a value of 1 at 600 nm. Deviations from a straight line indicate deviations from a λ -n dependence.

Fig. 5
Fig. 5

Effect of changes in n s on Q s (1 - g) for 0.05 and 0.1-µm-radius spheres. All curves have been normalized to have a value of 1 at 600 nm.

Fig. 6
Fig. 6

Schematic of the instrumental systems. (a) The experimental system used for measurement of Intralipid. (b) The experimental system used for measurement of polystyrene spheres.

Fig. 7
Fig. 7

Comparison of measured and calculated values of μ s ′ for suspensions of 1.02-µm-, 1.5-µm-, and 1.85-µm-radius spheres. The curves have been scaled such that the area under the theoritical curves is equal to the area under the corresponding experimental curves.

Fig. 8
Fig. 8

Comparison of the measured change in absorbance that is due to the addition of a tiny amount of red food coloring to the expected change based on spectrophotometer measurements of a solution of red food coloring. The open squares measured absorbance of 15% Intralipid-10% divided by a factor of 10.

Fig. 9
Fig. 9

Measured reduced scattering coefficient of Intralipid. This was performed for three different Intralipid suspensions with varying amounts of red food coloring added (the maximum absorption of the red food coloring varied from 0.009 to 0.013 cm-1). The curves (which are all in the figure) are almost indistinguishable.

Fig. 10
Fig. 10

(a) Elastic measurements on three suspensions of different size polystyrene spheres with source-to-detection fiber separation of 1.65 cm. (b) Elastic measurements on three suspensions of different size polystyrene spheres with source-to-detection fiber separation of 0.05 cm. All curves have been scaled to have a value of 1 at 500 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

μs=QsNsAs,
μs=QsNsAs1-g,
μa=QaNsAs.
μaλ=cb12λexpboλ,
μsλ=b12λ3μaλ-μaλ.
Iρ=I01μtμeff+1r1exp-μeffr1r12+1μt+2zbμeff+1r2exp-μeffr2r12,
r1=1μt2+ρ21/2,  r2=1μt+2zb22+ρ21/2,  μeff=μaD, μt=μa+μs and zb=2AD,

Metrics