Abstract

A kind of reflection filter with a narrow bandwidth and high reflectivity is designed as being composed of an all-dielectric Fabry–Perot filter, a high-reflectivity Ag film, and especially an ultrathin metallic film, nk. Exemplary structures and some formulas concerning spectral-reflection performances, such as general reflectivity, maximum reflectivity, and the halfwidth of the reflection band, are given. Experiments show the validity of this design.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Gamble, P. H. Lissberger, “Reflection filter multilayers of metallic and dielectric thin films,” Appl. Opt. 28, 2838–2846 (1989).
    [CrossRef] [PubMed]
  2. D. B. Payne, J. R. Stern, “Transparent single mode fiber optical networks,” J. Lightwave Technol. LT-4, 864–869 (1986).
    [CrossRef]
  3. S. R. Mallinson, “Wavelength-selective filters for single-mode fiber WDM system using Fabry–Perot interferometers,” Appl. Opt. 26, 430–436 (1987).
    [CrossRef] [PubMed]
  4. E. Spiller, “Reflective multilayer coatings for the far UV region,” Appl. Opt. 15, 2333–2338 (1976).
    [CrossRef] [PubMed]
  5. J.-S. Sheng, J.-T. Lue, “Ultraviolet narrow-band rejection filters composed of multiple metal and dielectric layers,” Appl. Opt. 31, 6117–6121 (1992).
    [CrossRef] [PubMed]
  6. J. T. Lue, Y.-S. Hor “Optical filters constructed from multilayers of dielectric and thin metallic films operating in the anomalous akin effect region,” J. Opt. Soc. Am. B 6, 1103–1105 (1989).
    [CrossRef]
  7. J.-S. Sheng, J.-T. Lue, J. H. Tyan, “Design criteria for band rejection filters made from multilayers of dielectric and ultrathin metal film,” Appl. Opt. 30, 1746–1748 (1991).
    [CrossRef] [PubMed]
  8. P. Guo “Reflection diagram-aided technique for optical coating design and monitoring,” Appl. Opt. 28, 2874–2885 (1989).
    [CrossRef]
  9. P. B. Johnson, R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056–5070 (1974).
    [CrossRef]

1992

1991

1989

1987

1986

D. B. Payne, J. R. Stern, “Transparent single mode fiber optical networks,” J. Lightwave Technol. LT-4, 864–869 (1986).
[CrossRef]

1976

1974

P. B. Johnson, R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056–5070 (1974).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056–5070 (1974).
[CrossRef]

Gamble, R.

Guo, P.

P. Guo “Reflection diagram-aided technique for optical coating design and monitoring,” Appl. Opt. 28, 2874–2885 (1989).
[CrossRef]

Hor, Y.-S.

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056–5070 (1974).
[CrossRef]

Lissberger, P. H.

Lue, J. T.

Lue, J.-T.

Mallinson, S. R.

Payne, D. B.

D. B. Payne, J. R. Stern, “Transparent single mode fiber optical networks,” J. Lightwave Technol. LT-4, 864–869 (1986).
[CrossRef]

Sheng, J.-S.

Spiller, E.

Stern, J. R.

D. B. Payne, J. R. Stern, “Transparent single mode fiber optical networks,” J. Lightwave Technol. LT-4, 864–869 (1986).
[CrossRef]

Tyan, J. H.

Appl. Opt.

J. Lightwave Technol.

D. B. Payne, J. R. Stern, “Transparent single mode fiber optical networks,” J. Lightwave Technol. LT-4, 864–869 (1986).
[CrossRef]

J. Opt. Soc. Am. B

Phy. Rev. B

P. B. Johnson, R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phy. Rev. B 9, 5056–5070 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normal-incidence spectral reflectance (solid curve) and absorptivity (dashed curve) of the multilayer coatings A/Cr0.94LH2LH0.76LAg/G with n A = n G = 1.52, d Cr = 8 nm, d Ag = 100 nm, n H = 2.35, n L = 1.35, λ0 = 520 nm.

Fig. 2
Fig. 2

Normal-incidence spectral-reflectance curve of the multilayer coatings A/Cr0.94L(HL)2(LH)20.76LAg/G with n A = n G = 1.52, d Cr = 8 nm, d Ag = 100 nm, n H = 2.35, n L = 1.35, λ0 = 520 nm.

Fig. 3
Fig. 3

Normal-incidence spectral-reflectance curve of the multilayer coatings A/Cr0.94LH2LHLHLH0.76LAg/G with n A = n G = 1.52, d Cr = 8 nm, d Ag = 100 nm, n H = 2.35, n L = 1.35, λ0 = 520 nm.

Fig. 4
Fig. 4

Monitored transmissivity curve of the multilayer coatings G/Cr0.94LH2LH0.76LAg/A at 520 nm with n A = 1, n G = 1.52, d Cr = 8 nm, d Ag = 100 nm, n H = 2.35, n L = 1.35, λ0 = 520 nm, λmonitor = 520 nm.

Fig. 5
Fig. 5

a, Experimental and, b, theoretical spectral-reflectance curves of the multilayer coatings G/Cr0.94LH2LH0.76LAg/A at 7° incidence with n A = n G = 1.52, d Cr = 8 nm, d Ag = 100 nm, n H = 2.35, n L = 1.35, λ0 = 520 nm.

Tables (1)

Tables Icon

Table 1 Optical Constants n and k of the Thin Cr Film.a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

m=cos δ¯j sinδ¯η¯jη¯ sinδ¯cosδ¯ 1j2πλ d2ππd2nk1,
BC=m1YB1+j 2πλd · Y2πλd2nk+YB,
Rn0-2πλdn0Y+2nk-Y2+2πλdn0Y-Y2n0-2πλdn0Y-2nk+Y2+2πλdn0Y+Y2.
z2π tan-1kn1.
B0C0cosπ2x-2πλ0 dn1 sinπ2x2πλ0d2nkcosπ2x+jn1 sinπ2xB0.
R0n0-4πλ0dnkcosπ2x-2πλ0dn0n1 sinπ2x2+n1 sinπ2x2n0+4πλ0dnkcosπ2x-2πλ0dn0n1 sinπ2x2+n1 sinπ2x2.
2Δλ0.54Aλ0π12πλ0n0d2nk-n02-2πλ0d2nk21/2,
A=n11+2n1n2-n11-n2n12N+2.
2Δλ0.5λ04Aπ12πλ0n0d2nk-n02-2πλ0d2nk21/2.

Metrics