Abstract

We report the design and performance of 300-mK composite bolometers that use micromesh absorbers and support structures patterned from thin films of low-stress silicon nitride. The small geometrical filling factor of the micromesh absorber provides 20× reduction in heat capacity and cosmic ray cross section relative to a solid absorber with no loss in IR-absorption efficiency. The support structure is mechanically robust and has a thermal conductance, G < 2 × 10-11 W/K, which is four times smaller than previously achieved at 300 mK. The temperature rise of the bolometer is measured with a neutron transmutation doped germanium thermistor attached to the absorbing mesh. The dispersion in electrical and thermal parameters of a sample of 12 bolometers optimized for the Sunyaev–Zel’dovich Infrared Experiment is ±7% in R(T), ±5% in optical efficiency, and ±4% in G.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Mather, “Bolometers: ultimate sensitivity, optimization, and amplifier coupling,” Appl. Opt. 23, 584–588 (1984).
    [CrossRef] [PubMed]
  2. D. C. Alsop, C. Inman, A. E. Lange, T. Wilbanks, “Design and construction of high-sensitivity infrared bolometers for operation at 300 mK,” Appl. Opt. 31, 6610–6615 (1992).
    [CrossRef] [PubMed]
  3. M. Dragovan, University of Chicago, Chicago, Ill. 60637 (personal communication, 1993).
  4. E. I. Dyachkov, R. Herzog, I. S. Khukhareva, A. Nichitiu, “Thermal conductivity and electrical resistivity of Nb–Ti (HT-50) as a function of temperature and magnetic field,” Cryogenics 21, 47–51 (1981).
    [CrossRef]
  5. 0.0005″–0.003″ OD copper clad Nb–Ti wire, California Fine Wire Company, Grover City, Calif.
  6. M. Devlin, A. E. Lange, T. M. Wilbanks, S. Sato, “A dc-coupled, high sensitivity bolometric detector system for the infrared telescope in space,” IEEE Trans. Nucl. Sci. 40, 162–165 (1993).
    [CrossRef]
  7. J. Clarke, G. I. Hoffer, P. L. Richards, N. H. Yeh, “Superconductive bolometers for submillimeter wavelengths,” J. Appl. Phys. 48, 4865–4879 (1977).
    [CrossRef]
  8. P. M. Downey, A. D. Jeffries, S. S. Meyer, R. Weiss, F. J. Bachner, J. P. Donnelley, W. T. Lindley, R. W. Mountain, D. J. Silversmith, “Monolithic silicon bolometers,” Appl. Opt. 23, 910–914 (1984).
    [CrossRef] [PubMed]
  9. N. S. Nishioka, P. L. Richards, D. P. Woody, “Composite bolometers for submillimeter wavelengths,” Appl. Opt. 17, 1562–1567 (1978).
    [CrossRef] [PubMed]
  10. M. Dragovan, S. H. Moseley, “Gold absorbing film for a composite bolometer,” Appl. Opt. 23, 654–656 (1984).
    [CrossRef] [PubMed]
  11. W. H. Holmes, Department of Physics, University of California, Berkeley, Calif. 24720 (personal communication, 1994).
  12. S. Hong, T. P. Weihs, J. C. Bravman, W. D. Nix, “Measuring stiffness and residual stresses of silicon nitride thin films,” J. Electron. Mater. 19, 903–909 (1990).
    [CrossRef]
  13. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
    [CrossRef]
  14. G. Hoffer, “Superconducting junction bolometers,” Ph.D. dissertation (University of California at Berkeley, Berkeley, Calif., 1980).
  15. E. N. Glezer, A. E. Lange, T. M. Wilbanks, “Bolometric detectors: optimization for differential radiometers,” Appl. Opt. 31, 7214–7218 (1992).
    [CrossRef] [PubMed]
  16. J. J. Bock, D. Chen, P. D. Mauskopf, A. E. Lange, “A novel bolometer for infrared and millimeter-wave astrophysics,” Space Sci. Rev. 74, 229–235 (1995).
    [CrossRef]
  17. P. H. Keesom, G. Seidel, “Specific heat of germanium and silicon at low temperatures,” Phys. Rev. 133, 33–39 (1959).
    [CrossRef]
  18. R. J. Corruccini, J. J. Gneiwek, “ Specific heat and enthalpy of some solids at low temperatures,” (U.S. National Bureau of Standards, Washington, D.C., 1960).
  19. V. I. Koshchenko, Y. Kh. Grinberg, “Thermodynamic properties of Si3N4,” Neorgan. Mater. 18, 1064–1066 (1982).

1995 (1)

J. J. Bock, D. Chen, P. D. Mauskopf, A. E. Lange, “A novel bolometer for infrared and millimeter-wave astrophysics,” Space Sci. Rev. 74, 229–235 (1995).
[CrossRef]

1993 (1)

M. Devlin, A. E. Lange, T. M. Wilbanks, S. Sato, “A dc-coupled, high sensitivity bolometric detector system for the infrared telescope in space,” IEEE Trans. Nucl. Sci. 40, 162–165 (1993).
[CrossRef]

1992 (2)

1990 (1)

S. Hong, T. P. Weihs, J. C. Bravman, W. D. Nix, “Measuring stiffness and residual stresses of silicon nitride thin films,” J. Electron. Mater. 19, 903–909 (1990).
[CrossRef]

1984 (3)

1982 (1)

V. I. Koshchenko, Y. Kh. Grinberg, “Thermodynamic properties of Si3N4,” Neorgan. Mater. 18, 1064–1066 (1982).

1981 (1)

E. I. Dyachkov, R. Herzog, I. S. Khukhareva, A. Nichitiu, “Thermal conductivity and electrical resistivity of Nb–Ti (HT-50) as a function of temperature and magnetic field,” Cryogenics 21, 47–51 (1981).
[CrossRef]

1978 (1)

1977 (1)

J. Clarke, G. I. Hoffer, P. L. Richards, N. H. Yeh, “Superconductive bolometers for submillimeter wavelengths,” J. Appl. Phys. 48, 4865–4879 (1977).
[CrossRef]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

1959 (1)

P. H. Keesom, G. Seidel, “Specific heat of germanium and silicon at low temperatures,” Phys. Rev. 133, 33–39 (1959).
[CrossRef]

Alsop, D. C.

Bachner, F. J.

Bock, J. J.

J. J. Bock, D. Chen, P. D. Mauskopf, A. E. Lange, “A novel bolometer for infrared and millimeter-wave astrophysics,” Space Sci. Rev. 74, 229–235 (1995).
[CrossRef]

Bravman, J. C.

S. Hong, T. P. Weihs, J. C. Bravman, W. D. Nix, “Measuring stiffness and residual stresses of silicon nitride thin films,” J. Electron. Mater. 19, 903–909 (1990).
[CrossRef]

Chen, D.

J. J. Bock, D. Chen, P. D. Mauskopf, A. E. Lange, “A novel bolometer for infrared and millimeter-wave astrophysics,” Space Sci. Rev. 74, 229–235 (1995).
[CrossRef]

Clarke, J.

J. Clarke, G. I. Hoffer, P. L. Richards, N. H. Yeh, “Superconductive bolometers for submillimeter wavelengths,” J. Appl. Phys. 48, 4865–4879 (1977).
[CrossRef]

Corruccini, R. J.

R. J. Corruccini, J. J. Gneiwek, “ Specific heat and enthalpy of some solids at low temperatures,” (U.S. National Bureau of Standards, Washington, D.C., 1960).

Devlin, M.

M. Devlin, A. E. Lange, T. M. Wilbanks, S. Sato, “A dc-coupled, high sensitivity bolometric detector system for the infrared telescope in space,” IEEE Trans. Nucl. Sci. 40, 162–165 (1993).
[CrossRef]

Donnelley, J. P.

Downey, P. M.

Dragovan, M.

M. Dragovan, S. H. Moseley, “Gold absorbing film for a composite bolometer,” Appl. Opt. 23, 654–656 (1984).
[CrossRef] [PubMed]

M. Dragovan, University of Chicago, Chicago, Ill. 60637 (personal communication, 1993).

Dyachkov, E. I.

E. I. Dyachkov, R. Herzog, I. S. Khukhareva, A. Nichitiu, “Thermal conductivity and electrical resistivity of Nb–Ti (HT-50) as a function of temperature and magnetic field,” Cryogenics 21, 47–51 (1981).
[CrossRef]

Glezer, E. N.

Gneiwek, J. J.

R. J. Corruccini, J. J. Gneiwek, “ Specific heat and enthalpy of some solids at low temperatures,” (U.S. National Bureau of Standards, Washington, D.C., 1960).

Grinberg, Y. Kh.

V. I. Koshchenko, Y. Kh. Grinberg, “Thermodynamic properties of Si3N4,” Neorgan. Mater. 18, 1064–1066 (1982).

Herzog, R.

E. I. Dyachkov, R. Herzog, I. S. Khukhareva, A. Nichitiu, “Thermal conductivity and electrical resistivity of Nb–Ti (HT-50) as a function of temperature and magnetic field,” Cryogenics 21, 47–51 (1981).
[CrossRef]

Hoffer, G.

G. Hoffer, “Superconducting junction bolometers,” Ph.D. dissertation (University of California at Berkeley, Berkeley, Calif., 1980).

Hoffer, G. I.

J. Clarke, G. I. Hoffer, P. L. Richards, N. H. Yeh, “Superconductive bolometers for submillimeter wavelengths,” J. Appl. Phys. 48, 4865–4879 (1977).
[CrossRef]

Holmes, W. H.

W. H. Holmes, Department of Physics, University of California, Berkeley, Calif. 24720 (personal communication, 1994).

Hong, S.

S. Hong, T. P. Weihs, J. C. Bravman, W. D. Nix, “Measuring stiffness and residual stresses of silicon nitride thin films,” J. Electron. Mater. 19, 903–909 (1990).
[CrossRef]

Inman, C.

Jeffries, A. D.

Keesom, P. H.

P. H. Keesom, G. Seidel, “Specific heat of germanium and silicon at low temperatures,” Phys. Rev. 133, 33–39 (1959).
[CrossRef]

Khukhareva, I. S.

E. I. Dyachkov, R. Herzog, I. S. Khukhareva, A. Nichitiu, “Thermal conductivity and electrical resistivity of Nb–Ti (HT-50) as a function of temperature and magnetic field,” Cryogenics 21, 47–51 (1981).
[CrossRef]

Koshchenko, V. I.

V. I. Koshchenko, Y. Kh. Grinberg, “Thermodynamic properties of Si3N4,” Neorgan. Mater. 18, 1064–1066 (1982).

Lange, A. E.

J. J. Bock, D. Chen, P. D. Mauskopf, A. E. Lange, “A novel bolometer for infrared and millimeter-wave astrophysics,” Space Sci. Rev. 74, 229–235 (1995).
[CrossRef]

M. Devlin, A. E. Lange, T. M. Wilbanks, S. Sato, “A dc-coupled, high sensitivity bolometric detector system for the infrared telescope in space,” IEEE Trans. Nucl. Sci. 40, 162–165 (1993).
[CrossRef]

E. N. Glezer, A. E. Lange, T. M. Wilbanks, “Bolometric detectors: optimization for differential radiometers,” Appl. Opt. 31, 7214–7218 (1992).
[CrossRef] [PubMed]

D. C. Alsop, C. Inman, A. E. Lange, T. Wilbanks, “Design and construction of high-sensitivity infrared bolometers for operation at 300 mK,” Appl. Opt. 31, 6610–6615 (1992).
[CrossRef] [PubMed]

Lindley, W. T.

Mather, J. C.

Mauskopf, P. D.

J. J. Bock, D. Chen, P. D. Mauskopf, A. E. Lange, “A novel bolometer for infrared and millimeter-wave astrophysics,” Space Sci. Rev. 74, 229–235 (1995).
[CrossRef]

Meyer, S. S.

Moseley, S. H.

Mountain, R. W.

Nichitiu, A.

E. I. Dyachkov, R. Herzog, I. S. Khukhareva, A. Nichitiu, “Thermal conductivity and electrical resistivity of Nb–Ti (HT-50) as a function of temperature and magnetic field,” Cryogenics 21, 47–51 (1981).
[CrossRef]

Nishioka, N. S.

Nix, W. D.

S. Hong, T. P. Weihs, J. C. Bravman, W. D. Nix, “Measuring stiffness and residual stresses of silicon nitride thin films,” J. Electron. Mater. 19, 903–909 (1990).
[CrossRef]

Richards, P. L.

N. S. Nishioka, P. L. Richards, D. P. Woody, “Composite bolometers for submillimeter wavelengths,” Appl. Opt. 17, 1562–1567 (1978).
[CrossRef] [PubMed]

J. Clarke, G. I. Hoffer, P. L. Richards, N. H. Yeh, “Superconductive bolometers for submillimeter wavelengths,” J. Appl. Phys. 48, 4865–4879 (1977).
[CrossRef]

Sato, S.

M. Devlin, A. E. Lange, T. M. Wilbanks, S. Sato, “A dc-coupled, high sensitivity bolometric detector system for the infrared telescope in space,” IEEE Trans. Nucl. Sci. 40, 162–165 (1993).
[CrossRef]

Seidel, G.

P. H. Keesom, G. Seidel, “Specific heat of germanium and silicon at low temperatures,” Phys. Rev. 133, 33–39 (1959).
[CrossRef]

Silversmith, D. J.

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

Weihs, T. P.

S. Hong, T. P. Weihs, J. C. Bravman, W. D. Nix, “Measuring stiffness and residual stresses of silicon nitride thin films,” J. Electron. Mater. 19, 903–909 (1990).
[CrossRef]

Weiss, R.

Wilbanks, T.

Wilbanks, T. M.

M. Devlin, A. E. Lange, T. M. Wilbanks, S. Sato, “A dc-coupled, high sensitivity bolometric detector system for the infrared telescope in space,” IEEE Trans. Nucl. Sci. 40, 162–165 (1993).
[CrossRef]

E. N. Glezer, A. E. Lange, T. M. Wilbanks, “Bolometric detectors: optimization for differential radiometers,” Appl. Opt. 31, 7214–7218 (1992).
[CrossRef] [PubMed]

Woody, D. P.

Yeh, N. H.

J. Clarke, G. I. Hoffer, P. L. Richards, N. H. Yeh, “Superconductive bolometers for submillimeter wavelengths,” J. Appl. Phys. 48, 4865–4879 (1977).
[CrossRef]

Appl. Opt. (6)

Cryogenics (1)

E. I. Dyachkov, R. Herzog, I. S. Khukhareva, A. Nichitiu, “Thermal conductivity and electrical resistivity of Nb–Ti (HT-50) as a function of temperature and magnetic field,” Cryogenics 21, 47–51 (1981).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

M. Devlin, A. E. Lange, T. M. Wilbanks, S. Sato, “A dc-coupled, high sensitivity bolometric detector system for the infrared telescope in space,” IEEE Trans. Nucl. Sci. 40, 162–165 (1993).
[CrossRef]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

J. Appl. Phys. (1)

J. Clarke, G. I. Hoffer, P. L. Richards, N. H. Yeh, “Superconductive bolometers for submillimeter wavelengths,” J. Appl. Phys. 48, 4865–4879 (1977).
[CrossRef]

J. Electron. Mater. (1)

S. Hong, T. P. Weihs, J. C. Bravman, W. D. Nix, “Measuring stiffness and residual stresses of silicon nitride thin films,” J. Electron. Mater. 19, 903–909 (1990).
[CrossRef]

Neorgan. Mater. (1)

V. I. Koshchenko, Y. Kh. Grinberg, “Thermodynamic properties of Si3N4,” Neorgan. Mater. 18, 1064–1066 (1982).

Phys. Rev. (1)

P. H. Keesom, G. Seidel, “Specific heat of germanium and silicon at low temperatures,” Phys. Rev. 133, 33–39 (1959).
[CrossRef]

Space Sci. Rev. (1)

J. J. Bock, D. Chen, P. D. Mauskopf, A. E. Lange, “A novel bolometer for infrared and millimeter-wave astrophysics,” Space Sci. Rev. 74, 229–235 (1995).
[CrossRef]

Other (5)

R. J. Corruccini, J. J. Gneiwek, “ Specific heat and enthalpy of some solids at low temperatures,” (U.S. National Bureau of Standards, Washington, D.C., 1960).

G. Hoffer, “Superconducting junction bolometers,” Ph.D. dissertation (University of California at Berkeley, Berkeley, Calif., 1980).

0.0005″–0.003″ OD copper clad Nb–Ti wire, California Fine Wire Company, Grover City, Calif.

M. Dragovan, University of Chicago, Chicago, Ill. 60637 (personal communication, 1993).

W. H. Holmes, Department of Physics, University of California, Berkeley, Calif. 24720 (personal communication, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Photograph of a micromesh bolometer that has been manufactured from a 1-µm-thick membrane of silicon nitride. The absorber is 5.6 mm in diameter, the long radial legs are 1 mm long and 5 µm wide, and the legs in the meshlike absorber region are 200 µm long and 4 µm wide. A metallic film is evaporated onto the absorber to match the impedence of free space. A (250-µm)3 NTD germanium thermistor is attached to the diamond region at the center and read out with two long Nb-Ti lead wires.

Fig. 2
Fig. 2

Distribution of parameters of 12 micromesh bolometers fabricated for the SuZIE instrument. These bolometers are differenced in pairs in an ac bridge circuit and must have parameters matched to within the dashed lines representing ±5% variation. All of these bolometers had Δ matched to within 1%.

Tables (4)

Tables Icon

Table 1 Spider Web Absorber Geometriesa

Tables Icon

Table 2 Estimated Heat Capacities of Thermistor and Lead Components

Tables Icon

Table 3 Thermal Conductance and Web Properties

Tables Icon

Table 4 Average Values and Dispersion in Parameters for Ten Micromesh Bolometers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Sω=S011+ ω2τe2,
NEPopt=γη4kBTc2G,
RT=R0 expΔT.
τ=τe2GRbZdyn+RLZdyn+RbRb+RL.
th=GctrGopt=11+αGsup/Gabs; Gsup/Gabs1,
ρg2at=189 Ω,

Metrics