Abstract

Theoretical and experimental results of a study that investigates cw thermal loading in solid-state saturable absorbers with low heat conductivities are presented. In addition to the temperature dependence of the refractive index, the proposed model considers the temperature dependence of the fluorescence lifetime to account for the local variations in the saturation intensity resulting from thermal gradients. In the calculations an iterative scheme is employed to calculate first the temperature distribution produced by the pump beam subject to saturable absorption with a constant saturation intensity and then the resulting modifications in the propagation parameters that are due to the presence of the calculated temperature distribution. Excellent agreement is obtained between the numerically calculated results and experimentally measured cw transmission data obtained with use of a Cr:YAG saturable absorber. Because the absorption cross section of the medium is used as one of the fitting parameters to yield the best fit between theory and experiment, the model further offers an accurate method whereby the cw power transmission data can be used to determine the absorption cross section of a saturable absorber subject to thermal loading.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription