Abstract

An optical rosette that incorporates fiber Bragg gratings as strain gauges has been designed, fabricated, and tested. We investigated it by measuring the state of strain of a thin plate as the test structure submitted to an increasing load in a four-point bending configuration and for various angular orientations. This device has also been successfully investigated as a self-temperature-compensated in situ uniaxial strain sensor without any angular dependence and with high accuracy in recovery analysis, leading us to expect many industrial applications. Printed circuit processes or integrated optics on polymers would provide a means for accuracy, reproducibility, and integration in a mass-produced process.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “U.V.-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
    [Crossref]
  2. R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fibers,” Int. J. Optoelectron. 9, 33–57 (1994).
  3. W. W. Morey, G. Meltz, and W. H. Glenn, “Bragg grating temperature and strain sensors,” in Sixth Optical Fiber Sensor Conference, Paris, France, Springer Proc. 44, 526–531, (1989).
  4. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [Crossref]
  5. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [Crossref] [PubMed]
  6. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [Crossref]
  7. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2-loading as a technique for achieving ultrahigh U.V. photosensitivity in GeO2-doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
    [Crossref]
  8. M. M. Broer, R. L. Cone, and J. R. Simpson, “Ultraviolet-induced distributed-feedback gratings in Ce3+-doped silica optical fibers,” Opt. Lett. 16, 1391–1393 (1991).
    [Crossref] [PubMed]
  9. L. Dong, J. L. Cruz, J. A. Tucknott, L. Reekie, and D. N. Payne, “Strong photosensitive gratings in tin-doped phosphosilicate optical fibers,” Opt. Lett. 20, 1982–1984 (1995).
    [Crossref] [PubMed]
  10. H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
    [Crossref]
  11. B. M. Monroe and W. K. Smothers, “Photopolymers for holography and waveguide applications,” in Polymers for Lightwave and Integrated Optics: Technology and Applications (Marcel Dekker, New York, 1992), Chap. 5; B. L. Booth, “Optical interconnection polymers,” in Polymers for Lightwave and Integrated Optics: Technology and Applications (Marcel Dekker, New York, 1992), Chap. 9.
  12. R. M. Measures, “Fiber optic sensing for smart materials and structures,” in Eighth Optical Fiber Sensor Conference, F. Leonberger and A. Dandridge, eds. (IEEE, New York, 1992), pp. 366–367.
    [Crossref]
  13. P. D. Foote, “Fibre Bragg grating strain sensors for aerospace smart structures,” in Second European Conference on Smart Structures and Materials, A. McDonald, P. T. Gardiner, B. Culshaw, and R. S. McEwen, eds., Proc. SPIE 2361, 290–293 (1994).
    [Crossref]
  14. W. W. Morey, G. A. Ball, and H. Singh, “Applications of fiber grating sensors,” in Fiber Optics and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 2–7 (1996).
    [Crossref]
  15. C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17, 2867–2869 (1978).
    [Crossref] [PubMed]
  16. J. S. Sirkis and C. E. Taylor, “Interferometric-fibre-optic strain sensor,” Exp. Mech. 28, 170–176 (1988).
    [Crossref]
  17. J. S. Sirkis and H. W. Haslach, “Interferometric strain measurement by arbitrarily configured, surface-mounted optical fibers,” J. Lightwave Technol. 8, 1497–1503 (1990).
    [Crossref]
  18. T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry–Perot strain rosettes,” Smart Mater. Struct. 1, 227–232 (1992).
    [Crossref]
  19. S. W. Case, J. J. Lesko, B. R. Fogg, and J. P. Carman, “Embedded extrinsic Fabry–Perot fiber optic strain rosette sensors,” J. Intelligent Mater. Syst. Struct. 5, 412–417 (1994).
    [Crossref]
  20. P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
    [Crossref]
  21. M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre,” Electron. Lett. 31, 823–825 (1995).
    [Crossref]
  22. M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
    [Crossref]
  23. E. Udd, D. Nelson, C. Lawrence, J. R. Spingarn, and B. Ferguson, “Three axis strain and temperature sensor,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 244–247.
  24. J. R. Dunphy, G. Meltz, M. Varasi, A. Vannucci, M. Signorazzi, P. Ferraro, S. I. Imparato, and C. Voto, “Embedded optical sensor capable of strain and temperature measurement using a single diffraction grating,” U.S. patent 5,399,854 (21 March 1994).
  25. S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32, 1133–1134 (1996).
    [Crossref]
  26. G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Recent developments in optical fibre sensing using fibre Bragg gratings,” in Fiber Optic and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 8–19 (1996).
    [Crossref]
  27. S. E. Kanellopoulos, V. A. Handerek, and A. J. Rogers, “Simultaneous strain and temperature sensing employing a photogenerated polarisation coupler and low-order modes in an elliptically cored optical fibre,” Electron. Lett. 30, 1786–1787 (1994).
  28. S. E. Kanellopoulos, V. A. Handerek, and A. J. Rogers, “Simultaneous strain and temperature sensing with photogenerated in-fiber gratings,” Opt. Lett. 20, 333–335 (1995).
    [Crossref] [PubMed]
  29. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 96–99 (1996).
    [Crossref]
  30. T. Liu, G. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fibre Bragg grating sensor and an extrinsic Fabry–Perot sensor,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 203–212 (1997).
  31. W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous strain and temperature recovery: error analysis,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 116–119.
  32. M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Structural bending sensor using fibre gratings,” in Fiber Optic and Laser Sensors XII, R. P. De Paula, ed., Proc. SPIE 2292, 407–413 (1994)
    [Crossref]
  33. W. W. Morey and W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent 5,042,898 (27 August 1991).
  34. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings,” Appl. Opt. 34, 6859–6861 (1995).
    [Crossref] [PubMed]
  35. A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
    [Crossref]
  36. G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, ed., Proc. SPIE 1516, 185–199 (1991).
    [Crossref]
  37. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).
  38. A. C. Ugural, Stresses in Plates and Shells (McGraw-Hill, New York, 1981).
  39. A. S. Saada, Elasticity—Theory and Application (Pergamon, New York, 1974).
  40. X. Z. Lin, Y. Zhang, H. L. An, and H. D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
    [Crossref]

1996 (3)

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “U.V.-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[Crossref]

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32, 1133–1134 (1996).
[Crossref]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 96–99 (1996).
[Crossref]

1995 (5)

G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, “Passive temperature-compensating package for optical fiber gratings,” Appl. Opt. 34, 6859–6861 (1995).
[Crossref] [PubMed]

S. E. Kanellopoulos, V. A. Handerek, and A. J. Rogers, “Simultaneous strain and temperature sensing with photogenerated in-fiber gratings,” Opt. Lett. 20, 333–335 (1995).
[Crossref] [PubMed]

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre,” Electron. Lett. 31, 823–825 (1995).
[Crossref]

L. Dong, J. L. Cruz, J. A. Tucknott, L. Reekie, and D. N. Payne, “Strong photosensitive gratings in tin-doped phosphosilicate optical fibers,” Opt. Lett. 20, 1982–1984 (1995).
[Crossref] [PubMed]

1994 (5)

H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
[Crossref]

R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fibers,” Int. J. Optoelectron. 9, 33–57 (1994).

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[Crossref]

S. W. Case, J. J. Lesko, B. R. Fogg, and J. P. Carman, “Embedded extrinsic Fabry–Perot fiber optic strain rosette sensors,” J. Intelligent Mater. Syst. Struct. 5, 412–417 (1994).
[Crossref]

X. Z. Lin, Y. Zhang, H. L. An, and H. D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

1993 (2)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2-loading as a technique for achieving ultrahigh U.V. photosensitivity in GeO2-doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

1992 (1)

T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry–Perot strain rosettes,” Smart Mater. Struct. 1, 227–232 (1992).
[Crossref]

1991 (1)

1990 (1)

J. S. Sirkis and H. W. Haslach, “Interferometric strain measurement by arbitrarily configured, surface-mounted optical fibers,” J. Lightwave Technol. 8, 1497–1503 (1990).
[Crossref]

1989 (1)

1988 (2)

J. S. Sirkis and C. E. Taylor, “Interferometric-fibre-optic strain sensor,” Exp. Mech. 28, 170–176 (1988).
[Crossref]

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[Crossref]

1978 (2)

C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17, 2867–2869 (1978).
[Crossref] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

An, H. L.

X. Z. Lin, Y. Zhang, H. L. An, and H. D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Archambault, J. L.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[Crossref]

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Structural bending sensor using fibre gratings,” in Fiber Optic and Laser Sensors XII, R. P. De Paula, ed., Proc. SPIE 2292, 407–413 (1994)
[Crossref]

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2-loading as a technique for achieving ultrahigh U.V. photosensitivity in GeO2-doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Ball, G. A.

W. W. Morey, G. A. Ball, and H. Singh, “Applications of fiber grating sensors,” in Fiber Optics and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 2–7 (1996).
[Crossref]

Bennion, I.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “U.V.-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[Crossref]

T. Liu, G. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fibre Bragg grating sensor and an extrinsic Fabry–Perot sensor,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 203–212 (1997).

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Recent developments in optical fibre sensing using fibre Bragg gratings,” in Fiber Optic and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 8–19 (1996).
[Crossref]

Bernage, P.

H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
[Crossref]

Bertholds, A.

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[Crossref]

Berthou, H.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Boj, S.

H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
[Crossref]

Brady, G. P.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Recent developments in optical fibre sensing using fibre Bragg gratings,” in Fiber Optic and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 8–19 (1996).
[Crossref]

Broer, M. M.

Butter, C. D.

Campbell, R. J.

R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fibers,” Int. J. Optoelectron. 9, 33–57 (1994).

Carman, J. P.

S. W. Case, J. J. Lesko, B. R. Fogg, and J. P. Carman, “Embedded extrinsic Fabry–Perot fiber optic strain rosette sensors,” J. Intelligent Mater. Syst. Struct. 5, 412–417 (1994).
[Crossref]

Case, S. W.

S. W. Case, J. J. Lesko, B. R. Fogg, and J. P. Carman, “Embedded extrinsic Fabry–Perot fiber optic strain rosette sensors,” J. Intelligent Mater. Syst. Struct. 5, 412–417 (1994).
[Crossref]

Cone, R. L.

Cruz, J. L.

L. Dong, J. L. Cruz, J. A. Tucknott, L. Reekie, and D. N. Payne, “Strong photosensitive gratings in tin-doped phosphosilicate optical fibers,” Opt. Lett. 20, 1982–1984 (1995).
[Crossref] [PubMed]

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre,” Electron. Lett. 31, 823–825 (1995).
[Crossref]

Culshaw, B.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous strain and temperature recovery: error analysis,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 116–119.

Dakin, J. P.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[Crossref]

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Structural bending sensor using fibre gratings,” in Fiber Optic and Laser Sensors XII, R. P. De Paula, ed., Proc. SPIE 2292, 407–413 (1994)
[Crossref]

Dandliker, R.

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[Crossref]

Delevaque, E.

H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
[Crossref]

Depeursinge, Y.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Dockney, M. L.

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32, 1133–1134 (1996).
[Crossref]

Dong, L.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre,” Electron. Lett. 31, 823–825 (1995).
[Crossref]

L. Dong, J. L. Cruz, J. A. Tucknott, L. Reekie, and D. N. Payne, “Strong photosensitive gratings in tin-doped phosphosilicate optical fibers,” Opt. Lett. 20, 1982–1984 (1995).
[Crossref] [PubMed]

Doran, N. J.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “U.V.-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[Crossref]

Ferdinand, P.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Ferguson, B.

E. Udd, D. Nelson, C. Lawrence, J. R. Spingarn, and B. Ferguson, “Three axis strain and temperature sensor,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 244–247.

Fernando, G.

T. Liu, G. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fibre Bragg grating sensor and an extrinsic Fabry–Perot sensor,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 203–212 (1997).

Ferragu, O.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Fogg, B. R.

S. W. Case, J. J. Lesko, B. R. Fogg, and J. P. Carman, “Embedded extrinsic Fabry–Perot fiber optic strain rosette sensors,” J. Intelligent Mater. Syst. Struct. 5, 412–417 (1994).
[Crossref]

Foote, P. D.

P. D. Foote, “Fibre Bragg grating strain sensors for aerospace smart structures,” in Second European Conference on Smart Structures and Materials, A. McDonald, P. T. Gardiner, B. Culshaw, and R. S. McEwen, eds., Proc. SPIE 2361, 290–293 (1994).
[Crossref]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Glenn, W. H.

Goodier, J. N.

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

Handerek, V. A.

Haslach, H. W.

J. S. Sirkis and H. W. Haslach, “Interferometric strain measurement by arbitrarily configured, surface-mounted optical fibers,” J. Lightwave Technol. 8, 1497–1503 (1990).
[Crossref]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Hocker, G. B.

Hogg, D.

T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry–Perot strain rosettes,” Smart Mater. Struct. 1, 227–232 (1992).
[Crossref]

Jackson, D. A.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Recent developments in optical fibre sensing using fibre Bragg gratings,” in Fiber Optic and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 8–19 (1996).
[Crossref]

T. Liu, G. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fibre Bragg grating sensor and an extrinsic Fabry–Perot sensor,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 203–212 (1997).

James, S. W.

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32, 1133–1134 (1996).
[Crossref]

Jarret, B.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Jin, W.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous strain and temperature recovery: error analysis,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 116–119.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Kalli, K.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Recent developments in optical fibre sensing using fibre Bragg gratings,” in Fiber Optic and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 8–19 (1996).
[Crossref]

Kanellopoulos, S. E.

Kashyap, R.

R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fibers,” Int. J. Optoelectron. 9, 33–57 (1994).

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

Kersey, A. D.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 96–99 (1996).
[Crossref]

Konstantaki, M.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous strain and temperature recovery: error analysis,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 116–119.

Kotrosios, G.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Krug, P. A.

Lawrence, C.

E. Udd, D. Nelson, C. Lawrence, J. R. Spingarn, and B. Ferguson, “Three axis strain and temperature sensor,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 244–247.

Lechien, J. L.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2-loading as a technique for achieving ultrahigh U.V. photosensitivity in GeO2-doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Lescop, B.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Lesko, J. J.

S. W. Case, J. J. Lesko, B. R. Fogg, and J. P. Carman, “Embedded extrinsic Fabry–Perot fiber optic strain rosette sensors,” J. Intelligent Mater. Syst. Struct. 5, 412–417 (1994).
[Crossref]

Lin, X. Z.

X. Z. Lin, Y. Zhang, H. L. An, and H. D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Liu, H. D.

X. Z. Lin, Y. Zhang, H. L. An, and H. D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Liu, T.

T. Liu, G. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fibre Bragg grating sensor and an extrinsic Fabry–Perot sensor,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 203–212 (1997).

Magne, S.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Marty, V.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Measures, R. M.

T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry–Perot strain rosettes,” Smart Mater. Struct. 1, 227–232 (1992).
[Crossref]

R. M. Measures, “Fiber optic sensing for smart materials and structures,” in Eighth Optical Fiber Sensor Conference, F. Leonberger and A. Dandridge, eds. (IEEE, New York, 1992), pp. 366–367.
[Crossref]

Meltz, G.

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[Crossref] [PubMed]

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, ed., Proc. SPIE 1516, 185–199 (1991).
[Crossref]

Michel, J. B.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Michie, W. C.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous strain and temperature recovery: error analysis,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 116–119.

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2-loading as a technique for achieving ultrahigh U.V. photosensitivity in GeO2-doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Monerie, M.

H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
[Crossref]

Morey, W. W.

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
[Crossref] [PubMed]

W. W. Morey, G. A. Ball, and H. Singh, “Applications of fiber grating sensors,” in Fiber Optics and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 2–7 (1996).
[Crossref]

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, ed., Proc. SPIE 1516, 185–199 (1991).
[Crossref]

Nelson, D.

E. Udd, D. Nelson, C. Lawrence, J. R. Spingarn, and B. Ferguson, “Three axis strain and temperature sensor,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 244–247.

Neuman, V.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Niay, P.

H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
[Crossref]

Ouellette, F.

Patrick, H. J.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 96–99 (1996).
[Crossref]

Payne, D. N.

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 96–99 (1996).
[Crossref]

Pierre, G.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Poignant, H.

H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
[Crossref]

Rao, Y. J.

T. Liu, G. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fibre Bragg grating sensor and an extrinsic Fabry–Perot sensor,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 203–212 (1997).

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2-loading as a technique for achieving ultrahigh U.V. photosensitivity in GeO2-doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

Reekie, L.

L. Dong, J. L. Cruz, J. A. Tucknott, L. Reekie, and D. N. Payne, “Strong photosensitive gratings in tin-doped phosphosilicate optical fibers,” Opt. Lett. 20, 1982–1984 (1995).
[Crossref] [PubMed]

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre,” Electron. Lett. 31, 823–825 (1995).
[Crossref]

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[Crossref]

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Structural bending sensor using fibre gratings,” in Fiber Optic and Laser Sensors XII, R. P. De Paula, ed., Proc. SPIE 2292, 407–413 (1994)
[Crossref]

Renouf, Ch.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Rogers, A. J.

Rougeault, S.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Saada, A. S.

A. S. Saada, Elasticity—Theory and Application (Pergamon, New York, 1974).

Simpson, J. R.

Singh, H.

W. W. Morey, G. A. Ball, and H. Singh, “Applications of fiber grating sensors,” in Fiber Optics and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 2–7 (1996).
[Crossref]

Sirkis, J. S.

J. S. Sirkis and H. W. Haslach, “Interferometric strain measurement by arbitrarily configured, surface-mounted optical fibers,” J. Lightwave Technol. 8, 1497–1503 (1990).
[Crossref]

J. S. Sirkis and C. E. Taylor, “Interferometric-fibre-optic strain sensor,” Exp. Mech. 28, 170–176 (1988).
[Crossref]

Spingarn, J. R.

E. Udd, D. Nelson, C. Lawrence, J. R. Spingarn, and B. Ferguson, “Three axis strain and temperature sensor,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 244–247.

Stevens, W.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Sugden, K.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “U.V.-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[Crossref]

Tatam, R. P.

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32, 1133–1134 (1996).
[Crossref]

Taunay, T.

H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
[Crossref]

Taylor, C. E.

J. S. Sirkis and C. E. Taylor, “Interferometric-fibre-optic strain sensor,” Exp. Mech. 28, 170–176 (1988).
[Crossref]

Thorncraft, D. A.

Thursby, G.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous strain and temperature recovery: error analysis,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 116–119.

Timoshenko, S. P.

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

Toscano, D.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Tucknott, J. A.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre,” Electron. Lett. 31, 823–825 (1995).
[Crossref]

L. Dong, J. L. Cruz, J. A. Tucknott, L. Reekie, and D. N. Payne, “Strong photosensitive gratings in tin-doped phosphosilicate optical fibers,” Opt. Lett. 20, 1982–1984 (1995).
[Crossref] [PubMed]

Udd, E.

E. Udd, D. Nelson, C. Lawrence, J. R. Spingarn, and B. Ferguson, “Three axis strain and temperature sensor,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 244–247.

Ugural, A. C.

A. C. Ugural, Stresses in Plates and Shells (McGraw-Hill, New York, 1981).

Valis, T.

T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry–Perot strain rosettes,” Smart Mater. Struct. 1, 227–232 (1992).
[Crossref]

Van Uffelen, M.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Varelas, D.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Vengsarkar, A. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 96–99 (1996).
[Crossref]

Verbandt, Y.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Vœt, M. R. H.

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

Webb, D. J.

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Recent developments in optical fibre sensing using fibre Bragg gratings,” in Fiber Optic and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 8–19 (1996).
[Crossref]

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 96–99 (1996).
[Crossref]

Williams, J. A. R.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “U.V.-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[Crossref]

Xie, W. X.

H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
[Crossref]

Xu, M. G.

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre,” Electron. Lett. 31, 823–825 (1995).
[Crossref]

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[Crossref]

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Structural bending sensor using fibre gratings,” in Fiber Optic and Laser Sensors XII, R. P. De Paula, ed., Proc. SPIE 2292, 407–413 (1994)
[Crossref]

Yoffe, G. W.

Zhang, L.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “U.V.-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[Crossref]

T. Liu, G. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fibre Bragg grating sensor and an extrinsic Fabry–Perot sensor,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 203–212 (1997).

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Recent developments in optical fibre sensing using fibre Bragg gratings,” in Fiber Optic and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 8–19 (1996).
[Crossref]

Zhang, Y.

X. Z. Lin, Y. Zhang, H. L. An, and H. D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[Crossref]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[Crossref]

Electron. Lett. (6)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2-loading as a technique for achieving ultrahigh U.V. photosensitivity in GeO2-doped optical fibres,” Electron. Lett. 29, 1191–1193 (1993).
[Crossref]

H. Poignant, S. Boj, E. Delevaque, M. Monerie, T. Taunay P. Niay, P. Bernage, and W. X. Xie, “Efficiency and thermal behavior of cerium-doped fluorozirconate glass fibre Bragg gratings,” Electron. Lett. 30, 1339–1341 (1994).
[Crossref]

M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott, and J. L. Cruz, “Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre,” Electron. Lett. 31, 823–825 (1995).
[Crossref]

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30, 1085–1087 (1994).
[Crossref]

S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32, 1133–1134 (1996).
[Crossref]

X. Z. Lin, Y. Zhang, H. L. An, and H. D. Liu, “Electrically tunable singlemode fibre Bragg reflective filter,” Electron. Lett. 30, 887–888 (1994).
[Crossref]

Exp. Mech. (1)

J. S. Sirkis and C. E. Taylor, “Interferometric-fibre-optic strain sensor,” Exp. Mech. 28, 170–176 (1988).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 96–99 (1996).
[Crossref]

Int. J. Optoelectron. (1)

R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fibers,” Int. J. Optoelectron. 9, 33–57 (1994).

J. Intelligent Mater. Syst. Struct. (1)

S. W. Case, J. J. Lesko, B. R. Fogg, and J. P. Carman, “Embedded extrinsic Fabry–Perot fiber optic strain rosette sensors,” J. Intelligent Mater. Syst. Struct. 5, 412–417 (1994).
[Crossref]

J. Lightwave Technol. (3)

P. Ferdinand, O. Ferragu, J. L. Lechien, B. Lescop, S. Magne, V. Marty, S. Rougeault, G. Kotrosios, V. Neuman, Y. Depeursinge, J. B. Michel, M. Van Uffelen, D. Varelas, H. Berthou, G. Pierre, Ch. Renouf, B. Jarret, Y. Verbandt, W. Stevens, M. R. H. Vœt, and D. Toscano, “Mine operating accurate stability control with optical fiber sensing and Bragg grating technology: the BRITE-EuRam STABILOS project,” J. Lightwave Technol. 13, 1303–1313 (1995).
[Crossref]

A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
[Crossref]

J. S. Sirkis and H. W. Haslach, “Interferometric strain measurement by arbitrarily configured, surface-mounted optical fibers,” J. Lightwave Technol. 8, 1497–1503 (1990).
[Crossref]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, “U.V.-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
[Crossref]

Smart Mater. Struct. (1)

T. Valis, D. Hogg, and R. M. Measures, “Fiber optic Fabry–Perot strain rosettes,” Smart Mater. Struct. 1, 227–232 (1992).
[Crossref]

Other (17)

B. M. Monroe and W. K. Smothers, “Photopolymers for holography and waveguide applications,” in Polymers for Lightwave and Integrated Optics: Technology and Applications (Marcel Dekker, New York, 1992), Chap. 5; B. L. Booth, “Optical interconnection polymers,” in Polymers for Lightwave and Integrated Optics: Technology and Applications (Marcel Dekker, New York, 1992), Chap. 9.

R. M. Measures, “Fiber optic sensing for smart materials and structures,” in Eighth Optical Fiber Sensor Conference, F. Leonberger and A. Dandridge, eds. (IEEE, New York, 1992), pp. 366–367.
[Crossref]

P. D. Foote, “Fibre Bragg grating strain sensors for aerospace smart structures,” in Second European Conference on Smart Structures and Materials, A. McDonald, P. T. Gardiner, B. Culshaw, and R. S. McEwen, eds., Proc. SPIE 2361, 290–293 (1994).
[Crossref]

W. W. Morey, G. A. Ball, and H. Singh, “Applications of fiber grating sensors,” in Fiber Optics and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 2–7 (1996).
[Crossref]

W. W. Morey, G. Meltz, and W. H. Glenn, “Bragg grating temperature and strain sensors,” in Sixth Optical Fiber Sensor Conference, Paris, France, Springer Proc. 44, 526–531, (1989).

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, F. Ouellette, ed., Proc. SPIE 1516, 185–199 (1991).
[Crossref]

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

A. C. Ugural, Stresses in Plates and Shells (McGraw-Hill, New York, 1981).

A. S. Saada, Elasticity—Theory and Application (Pergamon, New York, 1974).

T. Liu, G. Fernando, Y. J. Rao, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous strain and temperature measurements in composites using a multiplexed fibre Bragg grating sensor and an extrinsic Fabry–Perot sensor,” in Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE 3042, 203–212 (1997).

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous strain and temperature recovery: error analysis,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 116–119.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Structural bending sensor using fibre gratings,” in Fiber Optic and Laser Sensors XII, R. P. De Paula, ed., Proc. SPIE 2292, 407–413 (1994)
[Crossref]

W. W. Morey and W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent 5,042,898 (27 August 1991).

G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Recent developments in optical fibre sensing using fibre Bragg gratings,” in Fiber Optic and Laser Sensors XIV, R. P. De Paula and J. W. Berthold III, eds., Proc. SPIE 2839, 8–19 (1996).
[Crossref]

S. E. Kanellopoulos, V. A. Handerek, and A. J. Rogers, “Simultaneous strain and temperature sensing employing a photogenerated polarisation coupler and low-order modes in an elliptically cored optical fibre,” Electron. Lett. 30, 1786–1787 (1994).

E. Udd, D. Nelson, C. Lawrence, J. R. Spingarn, and B. Ferguson, “Three axis strain and temperature sensor,” in Eleventh Optical Fiber Sensor Conference, Y. Ohtsuka and T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 244–247.

J. R. Dunphy, G. Meltz, M. Varasi, A. Vannucci, M. Signorazzi, P. Ferraro, S. I. Imparato, and C. Voto, “Embedded optical sensor capable of strain and temperature measurement using a single diffraction grating,” U.S. patent 5,399,854 (21 March 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Normal and shear stresses acting on a surface plane of the (a) outward normal y and (b) corresponding Mohr stress circle.

Fig. 2
Fig. 2

Four-point bending setup: SLD, superluminescent diode.

Fig. 3
Fig. 3

Bragg grating (a) delta rosette and (b) epoxy bonding onto a metallic test plate.

Fig. 4
Fig. 4

Experimental and theoretical evolutions of the Bragg grating wavelengths under an increased load for 0° orientation (FBG 1 is aligned along the Y principal axis) and experimental and theoretical evaluations of the principal strain ε X .

Fig. 5
Fig. 5

Experimental and theoretical evolutions of the Bragg grating wavelengths under an increased load for 30° orientation (FBG 1 is at 30° with respect to the Y principal axis) and experimental and theoretical evaluations of the principal strain ε X .

Fig. 6
Fig. 6

Experimental and theoretical evolutions of the Bragg grating wavelengths under an increased load for 0° orientation and demonstration of the self-temperature-compensated measurement of the uniaxial strain ε X .

Tables (3)

Tables Icon

Table 1 Parameters for Rosette Evaluation of Principal Strains ε X , ε Y , and Orientation α

Tables Icon

Table 2 Principal Strain-to-Plate Deflection Coefficients εX/W(µε/mm) for Various Angular Orientations of the Platea

Tables Icon

Table 3 Comparison of Recovery Analysis Performances of Several Temperature-Compensation Methods of FBG’s Involving Spectral Measurements in Terms of Relative Error to Spectral Resolution

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

λg=2neffΛ,
Δλgλg=Δneffneff+ΔΛΛ.
Δλgλg=εax-ncore22εrP11+P12+P12εax+αs+ζsΔT,
εr=-νsεax,
ΔλBλB=1-peεax+αs+ζsΔT,
Δλgλg=0.78εax+7.5×10-6ΔTK.
ΔλBλB=1-peεax+ζs+αs+1-pe×αstructure-αsΔT.
ΔλBλB=1-peεax+ζs+1-peαstructureΔT.
Δλgλg=0.78εax+25×10-6ΔTK.
σy=CX sin α+CY cos α=d+rcos2α,
τxy=rsin2α
d=σX+σY/2,
r=σY-σX/2.
εy=σy/E=d+r cos2α,
d=εX+εY/2,
r=εY-εX/2.
σy-d2+τxy2=r2.
εX=1/EσX-νσY,εY=1/EσY-νσX.
σX=E/1-ν2εX+νεY, σY=E/1-ν2εY+νεX,
ε1=d+r cos2α  gauge 1,ε2=d+r cos2α+β  gauge 2,ε3=d+r cos2α+2β  gauge 3,
r120°=13ε1-ε33+2ε2-ε3ε1-ε3-121/2,
r45°=12ε1-ε31+2 ε2-ε3ε1-ε3-121/2.
εX=d-r,
εY=d+r.
r=εY-εX2=1+ν2εX.
εX=21+νr,
εX=21+ν13ε1-ε33+2 ε2-ε3ε1-ε3-121/2.
ε1=d+r cos2α  gauge 1,ε2=d+r cos2α+π/2=d-r cos2α  gauge 2.
r=ε1-ε22 cos2α.
Δrr=89sin2 β sin4α+βΔβ
ε1°εX=sin2α-ν cos2α=1-ν2-1+ν2cos2α, ε2°εX=sin2α+β-ν cos2α+β=1-ν2-1+ν2×cos2α+2β,ε3°εx=sin2α+2β-ν cos2α+2β=1-ν2-1+ν2×cos2α+4β.
T-T0=Δλiλi-1-peεi°1ξs+1-peαstructure.
ΔTΔλK/pm=1λ+1-pe1-ν2δεXδλ+431λ×1ξs+1-peαstructure.
δ2wxδx2=MxEI
δ4wxδx4=pxEI,
W=FaEIa26-L28,
εX=-h+Φ2δ2wxδx2x=L/2,
εX=-h+Φ2ML/2EI.
εX=-12h+ΦW4a2-3L2.
δ4wx, yδx4+2δ4wx, yδx2δy2+δ4wx, yδy4=121-ν2Eh3 px, y.
εYεX=-νapp=σY-νσXσX-νσY.

Metrics