Abstract

Investigations of highly efficient grating couplers for polymer slab and strip waveguides fabricated by electron-beam lithography are reported. A maximum input efficiency of 67% is achieved. The electron-beam direct-writing technique allows one to replicate the original gratings into polymer substrates by embossing. An all-polymeric optical chip with efficient grating couplers is demonstrated. Waveguide grating couplers with blazed profile and variable grating depth are investigated. Thus, the intensity distribution of the outcoupled light is matched to a Gaussian-like profile. A focusing blazed grating that couples the light with an efficiency of 42% into a polymer strip waveguide is reported. A curvature correction of the grating lines allows one to improve the focusing properties.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Dannberg, E. B. kley, R. Waldhäusl, A. Bräuer, and W. Karthe, “Passive polymeric components fabricated by embossing technique,” in Proceedings of the 19th European Conference on Optical Communication (Swiss Electrotechnical Association, Zurich, 1993), pp. 437–440.
  2. T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. QE-22, 845–867 (1986).
    [CrossRef]
  3. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits, Optical and Electrooptical Engineering Series R. E. Fisher and W. J. Smith, eds. (McGraw-Hill, New York, 1987).
  4. T. Fujita, H. Nishihara, and J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7, 578–580 (1982).
    [CrossRef] [PubMed]
  5. R. Moshrefzadeh, X. Mai, C. T. Seaton, and G. I. Stegeman, “Efficient grating couplers for polymer waveguides,” Appl. Opt. 26, 2501 (1987).
    [CrossRef]
  6. Q. Gong, G. Assanto, R. Zanoni, G. I. Stegeman, R. Burzynski, and P. N. Prasad, “Efficient grating coupling to poly-4BCMU optical waveguides,” Appl. Opt. 29, 3887–3890 (1990).
    [CrossRef] [PubMed]
  7. R. Waldhäusl, P. Dannberg, E. B. Kley, A. Bräuer, and W. Karthe, “Highly efficient blazed grating couplers in planar polymer waveguides,” Int. J. Optoelectron. 8, 529–536 (1993).
  8. K. A. Bates, L. Li, R. L. Roncone, and J. J. Burke, “Gaussian beams from variable groove depth grating couplers in planar waveguides,” Appl. Opt. 32, 2112–2116 (1993).
    [CrossRef] [PubMed]
  9. L. C. West, C. Roberts, J. Dunkel, G. Wojcik, and J. Mould, Jr., “Nonuniform grating couplers for coupling of Gaussion beams to compact waveguides,” in Integrated Photonics Research, Vol. 3 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 302–304.
  10. S. Miyanaga and T. Asakura, “Intensity profiles of outgoing beams from tapered grating couplers,” Radio Sci. 17, 135–143 (1982).
    [CrossRef]
  11. M. Lipovskaya and A. A. Lipovskii, “Study of an integrated optical grating coupler with a varying ripple depth,” Sov. Phys.—Tech. Phys. 28, 503–504 (1983).
  12. D. Heitmann and C. Ortiz, “Calculation and experimental verification of two-dimensional focusing grating couplers,” IEEE J. Quantum Electron. QE-17, 1257–1263 (1981).
    [CrossRef]
  13. S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disc pickup device,” J. Lightwave Technol. 4, 3–918 (1986).
    [CrossRef]
  14. M. Fujimura, T. Suhara, and H. Nishihara, “Integrated acousto-optic correlator using a biaxial focusing grating coupler,” Int. J. Optoelectron. 8, 7–12 (1993).
  15. S. Ura, T. Kimura, T. Suhara, and H. Nishihara, “An integrated-optic device using electrooptic polymer waveguide on Si substrate for modulating focus spot intensity distribution,” IEEE Photon. Technol. Lett. 5, 1291–1293 (1993).
    [CrossRef]
  16. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
    [CrossRef]
  17. R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Bräuer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
    [CrossRef]

1997 (1)

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Bräuer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

1993 (4)

M. Fujimura, T. Suhara, and H. Nishihara, “Integrated acousto-optic correlator using a biaxial focusing grating coupler,” Int. J. Optoelectron. 8, 7–12 (1993).

S. Ura, T. Kimura, T. Suhara, and H. Nishihara, “An integrated-optic device using electrooptic polymer waveguide on Si substrate for modulating focus spot intensity distribution,” IEEE Photon. Technol. Lett. 5, 1291–1293 (1993).
[CrossRef]

R. Waldhäusl, P. Dannberg, E. B. Kley, A. Bräuer, and W. Karthe, “Highly efficient blazed grating couplers in planar polymer waveguides,” Int. J. Optoelectron. 8, 529–536 (1993).

K. A. Bates, L. Li, R. L. Roncone, and J. J. Burke, “Gaussian beams from variable groove depth grating couplers in planar waveguides,” Appl. Opt. 32, 2112–2116 (1993).
[CrossRef] [PubMed]

1990 (1)

1987 (1)

1986 (2)

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. QE-22, 845–867 (1986).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disc pickup device,” J. Lightwave Technol. 4, 3–918 (1986).
[CrossRef]

1983 (1)

M. Lipovskaya and A. A. Lipovskii, “Study of an integrated optical grating coupler with a varying ripple depth,” Sov. Phys.—Tech. Phys. 28, 503–504 (1983).

1982 (2)

S. Miyanaga and T. Asakura, “Intensity profiles of outgoing beams from tapered grating couplers,” Radio Sci. 17, 135–143 (1982).
[CrossRef]

T. Fujita, H. Nishihara, and J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7, 578–580 (1982).
[CrossRef] [PubMed]

1981 (1)

D. Heitmann and C. Ortiz, “Calculation and experimental verification of two-dimensional focusing grating couplers,” IEEE J. Quantum Electron. QE-17, 1257–1263 (1981).
[CrossRef]

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Asakura, T.

S. Miyanaga and T. Asakura, “Intensity profiles of outgoing beams from tapered grating couplers,” Radio Sci. 17, 135–143 (1982).
[CrossRef]

Assanto, G.

Bates, K. A.

Bräuer, A.

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Bräuer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

R. Waldhäusl, P. Dannberg, E. B. Kley, A. Bräuer, and W. Karthe, “Highly efficient blazed grating couplers in planar polymer waveguides,” Int. J. Optoelectron. 8, 529–536 (1993).

Burke, J. J.

Burzynski, R.

Dannberg, P.

R. Waldhäusl, P. Dannberg, E. B. Kley, A. Bräuer, and W. Karthe, “Highly efficient blazed grating couplers in planar polymer waveguides,” Int. J. Optoelectron. 8, 529–536 (1993).

Fujimura, M.

M. Fujimura, T. Suhara, and H. Nishihara, “Integrated acousto-optic correlator using a biaxial focusing grating coupler,” Int. J. Optoelectron. 8, 7–12 (1993).

Fujita, T.

Gong, Q.

Heitmann, D.

D. Heitmann and C. Ortiz, “Calculation and experimental verification of two-dimensional focusing grating couplers,” IEEE J. Quantum Electron. QE-17, 1257–1263 (1981).
[CrossRef]

Karthe, W.

R. Waldhäusl, P. Dannberg, E. B. Kley, A. Bräuer, and W. Karthe, “Highly efficient blazed grating couplers in planar polymer waveguides,” Int. J. Optoelectron. 8, 529–536 (1993).

Kimura, T.

S. Ura, T. Kimura, T. Suhara, and H. Nishihara, “An integrated-optic device using electrooptic polymer waveguide on Si substrate for modulating focus spot intensity distribution,” IEEE Photon. Technol. Lett. 5, 1291–1293 (1993).
[CrossRef]

Kley, E. B.

R. Waldhäusl, P. Dannberg, E. B. Kley, A. Bräuer, and W. Karthe, “Highly efficient blazed grating couplers in planar polymer waveguides,” Int. J. Optoelectron. 8, 529–536 (1993).

Kley, E.-B.

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Bräuer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

Koyama, J.

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disc pickup device,” J. Lightwave Technol. 4, 3–918 (1986).
[CrossRef]

T. Fujita, H. Nishihara, and J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7, 578–580 (1982).
[CrossRef] [PubMed]

Li, L.

Lipovskaya, M.

M. Lipovskaya and A. A. Lipovskii, “Study of an integrated optical grating coupler with a varying ripple depth,” Sov. Phys.—Tech. Phys. 28, 503–504 (1983).

Lipovskii, A. A.

M. Lipovskaya and A. A. Lipovskii, “Study of an integrated optical grating coupler with a varying ripple depth,” Sov. Phys.—Tech. Phys. 28, 503–504 (1983).

Mai, X.

Miyanaga, S.

S. Miyanaga and T. Asakura, “Intensity profiles of outgoing beams from tapered grating couplers,” Radio Sci. 17, 135–143 (1982).
[CrossRef]

Moshrefzadeh, R.

Nishihara, H.

M. Fujimura, T. Suhara, and H. Nishihara, “Integrated acousto-optic correlator using a biaxial focusing grating coupler,” Int. J. Optoelectron. 8, 7–12 (1993).

S. Ura, T. Kimura, T. Suhara, and H. Nishihara, “An integrated-optic device using electrooptic polymer waveguide on Si substrate for modulating focus spot intensity distribution,” IEEE Photon. Technol. Lett. 5, 1291–1293 (1993).
[CrossRef]

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. QE-22, 845–867 (1986).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disc pickup device,” J. Lightwave Technol. 4, 3–918 (1986).
[CrossRef]

T. Fujita, H. Nishihara, and J. Koyama, “Blazed gratings and Fresnel lenses fabricated by electron-beam lithography,” Opt. Lett. 7, 578–580 (1982).
[CrossRef] [PubMed]

Ortiz, C.

D. Heitmann and C. Ortiz, “Calculation and experimental verification of two-dimensional focusing grating couplers,” IEEE J. Quantum Electron. QE-17, 1257–1263 (1981).
[CrossRef]

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Prasad, P. N.

Roncone, R. L.

Schnabel, B.

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Bräuer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

Seaton, C. T.

Stegeman, G. I.

Suhara, T.

S. Ura, T. Kimura, T. Suhara, and H. Nishihara, “An integrated-optic device using electrooptic polymer waveguide on Si substrate for modulating focus spot intensity distribution,” IEEE Photon. Technol. Lett. 5, 1291–1293 (1993).
[CrossRef]

M. Fujimura, T. Suhara, and H. Nishihara, “Integrated acousto-optic correlator using a biaxial focusing grating coupler,” Int. J. Optoelectron. 8, 7–12 (1993).

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. QE-22, 845–867 (1986).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disc pickup device,” J. Lightwave Technol. 4, 3–918 (1986).
[CrossRef]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Ura, S.

S. Ura, T. Kimura, T. Suhara, and H. Nishihara, “An integrated-optic device using electrooptic polymer waveguide on Si substrate for modulating focus spot intensity distribution,” IEEE Photon. Technol. Lett. 5, 1291–1293 (1993).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disc pickup device,” J. Lightwave Technol. 4, 3–918 (1986).
[CrossRef]

Waldhäusl, R.

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Bräuer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

R. Waldhäusl, P. Dannberg, E. B. Kley, A. Bräuer, and W. Karthe, “Highly efficient blazed grating couplers in planar polymer waveguides,” Int. J. Optoelectron. 8, 529–536 (1993).

Zanoni, R.

Appl. Opt. (3)

Appl. Phys. (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Electron. Lett. (1)

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Bräuer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Heitmann and C. Ortiz, “Calculation and experimental verification of two-dimensional focusing grating couplers,” IEEE J. Quantum Electron. QE-17, 1257–1263 (1981).
[CrossRef]

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. QE-22, 845–867 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Ura, T. Kimura, T. Suhara, and H. Nishihara, “An integrated-optic device using electrooptic polymer waveguide on Si substrate for modulating focus spot intensity distribution,” IEEE Photon. Technol. Lett. 5, 1291–1293 (1993).
[CrossRef]

Int. J. Optoelectron. (2)

M. Fujimura, T. Suhara, and H. Nishihara, “Integrated acousto-optic correlator using a biaxial focusing grating coupler,” Int. J. Optoelectron. 8, 7–12 (1993).

R. Waldhäusl, P. Dannberg, E. B. Kley, A. Bräuer, and W. Karthe, “Highly efficient blazed grating couplers in planar polymer waveguides,” Int. J. Optoelectron. 8, 529–536 (1993).

J. Lightwave Technol. (1)

S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disc pickup device,” J. Lightwave Technol. 4, 3–918 (1986).
[CrossRef]

Opt. Lett. (1)

Radio Sci. (1)

S. Miyanaga and T. Asakura, “Intensity profiles of outgoing beams from tapered grating couplers,” Radio Sci. 17, 135–143 (1982).
[CrossRef]

Sov. Phys.—Tech. Phys. (1)

M. Lipovskaya and A. A. Lipovskii, “Study of an integrated optical grating coupler with a varying ripple depth,” Sov. Phys.—Tech. Phys. 28, 503–504 (1983).

Other (3)

P. Dannberg, E. B. kley, R. Waldhäusl, A. Bräuer, and W. Karthe, “Passive polymeric components fabricated by embossing technique,” in Proceedings of the 19th European Conference on Optical Communication (Swiss Electrotechnical Association, Zurich, 1993), pp. 437–440.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits, Optical and Electrooptical Engineering Series R. E. Fisher and W. J. Smith, eds. (McGraw-Hill, New York, 1987).

L. C. West, C. Roberts, J. Dunkel, G. Wojcik, and J. Mould, Jr., “Nonuniform grating couplers for coupling of Gaussion beams to compact waveguides,” in Integrated Photonics Research, Vol. 3 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 302–304.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Embossing of the grating structure into the substrate.

Fig. 2
Fig. 2

General waveguide and grating configuration of the optical chip.

Fig. 3
Fig. 3

In-coupling into a planar waveguide by a grating with only one diffraction order.

Fig. 4
Fig. 4

Leakage parameter α versus grating length z.

Fig. 5
Fig. 5

Calculated (solid curve) and measured corrugation depth (squares) versus grating length z.

Fig. 6
Fig. 6

Zero offset of approximately 80 nm in the grating region, which results in a difference of the effective refractive indices in the grating and the waveguide regions for corrugated grating couplers.

Fig. 7
Fig. 7

Cross section of the near-field intensity pattern of a variable-groove-depth grating coupler.

Fig. 8
Fig. 8

Scheme of the focusing grating coupler with a slab waveguide.

Fig. 9
Fig. 9

Focusing grating coupler with a strip waveguide between. The distance of the end faces of the strip waveguide to the gratings is the focal length.

Tables (5)

Tables Icon

Table 1 Parameters Used for the Grating Coupler

Tables Icon

Table 2 Measurement Data of an Optical Chip Consisting of Two Blazed Gratings

Tables Icon

Table 3 Measurement Data of the Replicated All-Polymeric Optical Chip

Tables Icon

Table 4 Measurement Data of Focusing Gratings without and with the Correction

Tables Icon

Table 5 Measurments of the Focusing Grating Coupler with a Strip Waveguide Between, without and with Aberration Correction

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

neff=nc cos ϕc+mλΛ,
P=P0 exp-2αz with α=mαmc+αms,
-dA2zdz=B2z.
dA2(z)dz=-2αA2z.
dA2zdz=-2αzA2z with α=αz.
αz=B2z2A02-z0z B2tdt,
Bz=Cg2πσgexp-z-zm22σg2.
neff=nc cos ϕc+mλΛ,
qλ=znc cos ϕc-neffy2+z21/2, q=1,2,
neffgrat=neffwg.
z+qλn1 cos ϕcneff2-nc2 cos2 ϕc2qλneffneff2-nc2 cos2 ϕc2+y2qλneff2-nc2 cos2 ϕc1/22=1.
neffwg-neffgrat=Δneff5×10-3,
qλ=neffgraty2+z21/2+ncz cos ϕc+rqa×neffwg-neffgrat,
rqa=qaλf-zeay2+z21/2+y2+z2y2+1-ea2z2 with ea=nc cos ϕcneff.
2σ=2.44fλneffB1+B24f21/2,

Metrics