Abstract

The performance of a novel resonator that couples a grazing-incidence and a linear cavity is reported. The coupling secures single-longitudinal mode, TEM00, higher-efficiency and lower-threshold operation. By use of Ti:sapphire as the gain medium, a slope efficiency of 23% and a 100-nm tuning range are reported. A model is explained that fully predicts the mode behavior of the resonator and that can be used to optimize the cavity for single-mode operation. We have developed computer control of the cavity, which is simple in design and is used to lock the <200-MHz bandwidth mode to ±40 MHz. A 4.8-GHz scan has also been demonstrated.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
    [CrossRef]
  2. M. G. Littman, H. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
    [CrossRef] [PubMed]
  3. M. G. Littman, “Single-mode pulsed tunable dye laser,” Appl. Opt. 23, 4465–4468 (1984).
    [CrossRef] [PubMed]
  4. K. W. Kangas, D. D. Lowenthal, C. H. Muller, “Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator,” Opt. Lett. 14, 21–23 (1989).
    [CrossRef] [PubMed]
  5. M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138–140 (1978).
    [CrossRef] [PubMed]
  6. S. Saikan, “Nitrogen-laser-pumped single-mode dye laser,” Appl. Phys. 17, 41–44 (1978).
    [CrossRef]
  7. S. G. Dinev, I. G. Koprinkov, K. V. Stamenov, K. A. Stankov, “A novel double grazing-incidence single-mode dye laser,” Appl. Phys. 22, 287–291 (1980).
    [CrossRef]
  8. N. D. Hung, P. Brechignac, “A single-mode single-grating grazing incidence pulsed dye laser,” Opt. Commun. 54, 151–154 (1985).
    [CrossRef]
  9. K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981).
    [CrossRef] [PubMed]
  10. P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
    [CrossRef] [PubMed]
  11. O. L. Bourne, D. M. Rayner, “Pressure tuned single longitudinal mode dye laser,” Opt. Commun. 64, 461–466 (1987).
    [CrossRef]
  12. T. Raymond, P. Esherick, A. Smith, “Widely tunable single-longitudinal-mode pulsed dye laser,” Opt. Lett. 14, 1116–1118, (1989).
    [CrossRef] [PubMed]
  13. J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, W. Hogervorst, T. A. King, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
    [CrossRef] [PubMed]
  14. P. W. Smith, “Stabilized, single-frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
    [CrossRef]
  15. P. W. Smith, “On the stabilization of a high-power single frequency laser,” IEEE J. Quantum Electron. QE-2, 666–668 (1966).
    [CrossRef]
  16. D.-K. Ko, G. Lim, S.-H. Kim, B. H. Cha, J. Lee, “Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator,” Opt. Lett. 20, 710–712 (1995).
    [CrossRef] [PubMed]

1995

J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, W. Hogervorst, T. A. King, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
[CrossRef] [PubMed]

D.-K. Ko, G. Lim, S.-H. Kim, B. H. Cha, J. Lee, “Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator,” Opt. Lett. 20, 710–712 (1995).
[CrossRef] [PubMed]

1989

T. Raymond, P. Esherick, A. Smith, “Widely tunable single-longitudinal-mode pulsed dye laser,” Opt. Lett. 14, 1116–1118, (1989).
[CrossRef] [PubMed]

K. W. Kangas, D. D. Lowenthal, C. H. Muller, “Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator,” Opt. Lett. 14, 21–23 (1989).
[CrossRef] [PubMed]

1987

O. L. Bourne, D. M. Rayner, “Pressure tuned single longitudinal mode dye laser,” Opt. Commun. 64, 461–466 (1987).
[CrossRef]

1985

P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
[CrossRef] [PubMed]

N. D. Hung, P. Brechignac, “A single-mode single-grating grazing incidence pulsed dye laser,” Opt. Commun. 54, 151–154 (1985).
[CrossRef]

1984

M. G. Littman, “Single-mode pulsed tunable dye laser,” Appl. Opt. 23, 4465–4468 (1984).
[CrossRef] [PubMed]

1981

K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981).
[CrossRef] [PubMed]

1980

S. G. Dinev, I. G. Koprinkov, K. V. Stamenov, K. A. Stankov, “A novel double grazing-incidence single-mode dye laser,” Appl. Phys. 22, 287–291 (1980).
[CrossRef]

1978

M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138–140 (1978).
[CrossRef] [PubMed]

S. Saikan, “Nitrogen-laser-pumped single-mode dye laser,” Appl. Phys. 17, 41–44 (1978).
[CrossRef]

M. G. Littman, H. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
[CrossRef] [PubMed]

1977

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

1966

P. W. Smith, “On the stabilization of a high-power single frequency laser,” IEEE J. Quantum Electron. QE-2, 666–668 (1966).
[CrossRef]

1965

P. W. Smith, “Stabilized, single-frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
[CrossRef]

Boon-Engering, J. M.

J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, W. Hogervorst, T. A. King, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
[CrossRef] [PubMed]

Bourne, O. L.

O. L. Bourne, D. M. Rayner, “Pressure tuned single longitudinal mode dye laser,” Opt. Commun. 64, 461–466 (1987).
[CrossRef]

Brechignac, P.

N. D. Hung, P. Brechignac, “A single-mode single-grating grazing incidence pulsed dye laser,” Opt. Commun. 54, 151–154 (1985).
[CrossRef]

Cha, B. H.

D.-K. Ko, G. Lim, S.-H. Kim, B. H. Cha, J. Lee, “Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator,” Opt. Lett. 20, 710–712 (1995).
[CrossRef] [PubMed]

Danon, N. N.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Dinev, S. G.

S. G. Dinev, I. G. Koprinkov, K. V. Stamenov, K. A. Stankov, “A novel double grazing-incidence single-mode dye laser,” Appl. Phys. 22, 287–291 (1980).
[CrossRef]

Esherick, P.

T. Raymond, P. Esherick, A. Smith, “Widely tunable single-longitudinal-mode pulsed dye laser,” Opt. Lett. 14, 1116–1118, (1989).
[CrossRef] [PubMed]

Gloster, L. A. W.

J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, W. Hogervorst, T. A. King, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
[CrossRef] [PubMed]

Hogervorst, W.

J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, W. Hogervorst, T. A. King, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
[CrossRef] [PubMed]

Hung, N. D.

N. D. Hung, P. Brechignac, “A single-mode single-grating grazing incidence pulsed dye laser,” Opt. Commun. 54, 151–154 (1985).
[CrossRef]

Kangas, K. W.

K. W. Kangas, D. D. Lowenthal, C. H. Muller, “Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator,” Opt. Lett. 14, 21–23 (1989).
[CrossRef] [PubMed]

Kim, S.-H.

D.-K. Ko, G. Lim, S.-H. Kim, B. H. Cha, J. Lee, “Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator,” Opt. Lett. 20, 710–712 (1995).
[CrossRef] [PubMed]

King, T. A.

J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, W. Hogervorst, T. A. King, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
[CrossRef] [PubMed]

Ko, D.-K.

D.-K. Ko, G. Lim, S.-H. Kim, B. H. Cha, J. Lee, “Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator,” Opt. Lett. 20, 710–712 (1995).
[CrossRef] [PubMed]

Koprinkov, I. G.

S. G. Dinev, I. G. Koprinkov, K. V. Stamenov, K. A. Stankov, “A novel double grazing-incidence single-mode dye laser,” Appl. Phys. 22, 287–291 (1980).
[CrossRef]

Lee, J.

D.-K. Ko, G. Lim, S.-H. Kim, B. H. Cha, J. Lee, “Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator,” Opt. Lett. 20, 710–712 (1995).
[CrossRef] [PubMed]

Lim, G.

D.-K. Ko, G. Lim, S.-H. Kim, B. H. Cha, J. Lee, “Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator,” Opt. Lett. 20, 710–712 (1995).
[CrossRef] [PubMed]

Littman, M. G.

M. G. Littman, “Single-mode pulsed tunable dye laser,” Appl. Opt. 23, 4465–4468 (1984).
[CrossRef] [PubMed]

K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981).
[CrossRef] [PubMed]

M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138–140 (1978).
[CrossRef] [PubMed]

M. G. Littman, H. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
[CrossRef] [PubMed]

Liu, K.

K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981).
[CrossRef] [PubMed]

Lowenthal, D. D.

K. W. Kangas, D. D. Lowenthal, C. H. Muller, “Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator,” Opt. Lett. 14, 21–23 (1989).
[CrossRef] [PubMed]

McKinnie, I. T.

J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, W. Hogervorst, T. A. King, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
[CrossRef] [PubMed]

McNicholl, P.

P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
[CrossRef] [PubMed]

Metcalf, H.

M. G. Littman, H. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
[CrossRef] [PubMed]

Metcalf, H. J.

P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
[CrossRef] [PubMed]

Muller, C. H.

K. W. Kangas, D. D. Lowenthal, C. H. Muller, “Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator,” Opt. Lett. 14, 21–23 (1989).
[CrossRef] [PubMed]

Oppenheim, U. P.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Raymond, T.

T. Raymond, P. Esherick, A. Smith, “Widely tunable single-longitudinal-mode pulsed dye laser,” Opt. Lett. 14, 1116–1118, (1989).
[CrossRef] [PubMed]

Rayner, D. M.

O. L. Bourne, D. M. Rayner, “Pressure tuned single longitudinal mode dye laser,” Opt. Commun. 64, 461–466 (1987).
[CrossRef]

Saikan, S.

S. Saikan, “Nitrogen-laser-pumped single-mode dye laser,” Appl. Phys. 17, 41–44 (1978).
[CrossRef]

Shoshan, I.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Smith, A.

T. Raymond, P. Esherick, A. Smith, “Widely tunable single-longitudinal-mode pulsed dye laser,” Opt. Lett. 14, 1116–1118, (1989).
[CrossRef] [PubMed]

Smith, P. W.

P. W. Smith, “On the stabilization of a high-power single frequency laser,” IEEE J. Quantum Electron. QE-2, 666–668 (1966).
[CrossRef]

P. W. Smith, “Stabilized, single-frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
[CrossRef]

Stamenov, K. V.

S. G. Dinev, I. G. Koprinkov, K. V. Stamenov, K. A. Stankov, “A novel double grazing-incidence single-mode dye laser,” Appl. Phys. 22, 287–291 (1980).
[CrossRef]

Stankov, K. A.

S. G. Dinev, I. G. Koprinkov, K. V. Stamenov, K. A. Stankov, “A novel double grazing-incidence single-mode dye laser,” Appl. Phys. 22, 287–291 (1980).
[CrossRef]

van der Veer, W. E.

J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, W. Hogervorst, T. A. King, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
[CrossRef] [PubMed]

Appl. Opt.

M. G. Littman, H. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
[CrossRef] [PubMed]

M. G. Littman, “Single-mode pulsed tunable dye laser,” Appl. Opt. 23, 4465–4468 (1984).
[CrossRef] [PubMed]

P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
[CrossRef] [PubMed]

Appl. Phys.

S. Saikan, “Nitrogen-laser-pumped single-mode dye laser,” Appl. Phys. 17, 41–44 (1978).
[CrossRef]

S. G. Dinev, I. G. Koprinkov, K. V. Stamenov, K. A. Stankov, “A novel double grazing-incidence single-mode dye laser,” Appl. Phys. 22, 287–291 (1980).
[CrossRef]

IEEE J. Quantum Electron.

P. W. Smith, “Stabilized, single-frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
[CrossRef]

P. W. Smith, “On the stabilization of a high-power single frequency laser,” IEEE J. Quantum Electron. QE-2, 666–668 (1966).
[CrossRef]

J. Appl. Phys.

I. Shoshan, N. N. Danon, U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48, 4495–4497 (1977).
[CrossRef]

Opt. Commun.

O. L. Bourne, D. M. Rayner, “Pressure tuned single longitudinal mode dye laser,” Opt. Commun. 64, 461–466 (1987).
[CrossRef]

N. D. Hung, P. Brechignac, “A single-mode single-grating grazing incidence pulsed dye laser,” Opt. Commun. 54, 151–154 (1985).
[CrossRef]

Opt. Lett.

K. Liu, M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6, 117–118 (1981).
[CrossRef] [PubMed]

K. W. Kangas, D. D. Lowenthal, C. H. Muller, “Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator,” Opt. Lett. 14, 21–23 (1989).
[CrossRef] [PubMed]

M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138–140 (1978).
[CrossRef] [PubMed]

T. Raymond, P. Esherick, A. Smith, “Widely tunable single-longitudinal-mode pulsed dye laser,” Opt. Lett. 14, 1116–1118, (1989).
[CrossRef] [PubMed]

J. M. Boon-Engering, L. A. W. Gloster, W. E. van der Veer, I. T. McKinnie, W. Hogervorst, T. A. King, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087–2089 (1995).
[CrossRef] [PubMed]

D.-K. Ko, G. Lim, S.-H. Kim, B. H. Cha, J. Lee, “Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator,” Opt. Lett. 20, 710–712 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Design of the LGICC with computer-controlled cavity lengths.

Fig. 2
Fig. 2

Michelson interferometer representation of the LGICC.

Fig. 3
Fig. 3

Mode solutions and loss modulation of the LGICC. A 3.7-GHz mode separation is predicted for the cavity lengths given in Table 2.

Fig. 4
Fig. 4

Etalon transmission for the LGICC output showing a 3.7-GHz enhanced-mode spacing. The etalon had a FSR of 10 GHz and a finesse of 50.

Fig. 5
Fig. 5

Single-mode output energy response of the LGICC.

Fig. 6
Fig. 6

Single-mode tuning behavior of the LGICC.

Fig. 7
Fig. 7

Temporal behavior of the LGICC. The figures show the pulses in both the linear cavity and the LGICC with respect to the pump pulse at (a) 780 nm and (b) 820 nm.

Fig. 8
Fig. 8

Shot-to-shot frequency jitter of the LGICC under computer cavity control. A jitter of 40 MHz is shown.

Fig. 9
Fig. 9

Frequency stability of the LGICC under computer cavity control with induced mode hop.

Fig. 10
Fig. 10

A 4.8-GHz scan of the LGICC under computer cavity control.

Fig. 11
Fig. 11

Computer simulation of the scan of a central mode m = 0 in the LGICC. A 4.6-GHz scan range is predicted before competing (nonoscillating) modes m = +1 and m = +2 experience the same loss and begin to oscillate.

Tables (2)

Tables Icon

Table 1 Component specification for the LGICC with Computer Control

Tables Icon

Table 2 Cavity Lengths in the Model

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

expiωtρ4τg2 expi4πL4λ+ρg2ρ2 expi4πL2λ,
expiωtρ4τg2 expi4πL4λ+ρg2ρ2 expi4πL2λρ1×expi4πL1λg=expiωt.
g=1A expiθ1+B expiθ2=A exp-iθ1+B exp-iθ2A2+B2+2AB cosθ1-θ2,
A=ρ1ρ4τg2; B=ρ1ρ2ρg2;θ1=4πλL1+L4; θ2=4πλL1+L2.
A sinθ1+B sinθ2=0.
τg2ρ4 sin4πL1+L4λ=-ρg2ρ2 sin4πL1+L2λ.
L=1-1gg*=1-A2+B2+2AB cosθ1-θ2,
L=1-ρ12τg4ρ42+ρg4ρ22+2ρg2ρ2τg2ρ4×cos4πL4-L2/λ.
Δλ±2λ2πlsin θ+sin ϕ,

Metrics