Abstract

The alignment of birefringent crystals for use as wave plates and nonlinear frequency converters in high-power, low-repetition-rate laser systems, such as those used for laser fusion, is greatly facilitated through the use of convergent light (conoscopy). In such laser systems, a long shot cycle is necessary to allow laser amplifiers time to thermally equilibrate in order to produce beams of adequate wavefront quality. It is therefore essential that crystal parameters such as phase-matching angle and location of principle axes be determined off-line, and a method developed to easily transfer the alignment to the fusion laser system. Conoscopic methods13 have been used for the off-line alignment of two such devices in the 60-beam OMEGA4 laser system because of the simplicity and accuracy of such techniques. Both devices, of which 60 each are required, currently incorporate 30-cm-diam × 1-cm-thick KDP plates with the crystalline optic axis at 59° to the surface normal.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.G. Serbulenko, V.M Grika, Sov. Phys. Dokl. 25, 235 (1980).
  2. N.H. Hartshorne, A. Stuart, Crystals and the Polarising Microscope (Edwards Arnold Publishers Ltd., London, U.K., 1970).
  3. M. Warenghem, C.P. Grover, Mol. Cryst. Liq. Cryst. 159, 15 (1988).
  4. Laboratory for Laser Energetics LLE Review63, NTIS document No. DOE/SF/19460-91, 1995 (unpublished), p. 99.
  5. Laboratory for Laser Energetics LLE Review45, NTIS document No. DOE/DP40200-149, 1990 (unpublished), p. 1.
  6. W. Seka et al., Opt. Commun. 34, 469 (1980).
    [CrossRef]
  7. R.S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
    [CrossRef]

1988 (1)

M. Warenghem, C.P. Grover, Mol. Cryst. Liq. Cryst. 159, 15 (1988).

1981 (1)

R.S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

1980 (2)

M.G. Serbulenko, V.M Grika, Sov. Phys. Dokl. 25, 235 (1980).

W. Seka et al., Opt. Commun. 34, 469 (1980).
[CrossRef]

Craxton, R.S.

R.S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

Grika, V.M

M.G. Serbulenko, V.M Grika, Sov. Phys. Dokl. 25, 235 (1980).

Grover, C.P.

M. Warenghem, C.P. Grover, Mol. Cryst. Liq. Cryst. 159, 15 (1988).

Hartshorne, N.H.

N.H. Hartshorne, A. Stuart, Crystals and the Polarising Microscope (Edwards Arnold Publishers Ltd., London, U.K., 1970).

Seka, W.

W. Seka et al., Opt. Commun. 34, 469 (1980).
[CrossRef]

Serbulenko, M.G.

M.G. Serbulenko, V.M Grika, Sov. Phys. Dokl. 25, 235 (1980).

Stuart, A.

N.H. Hartshorne, A. Stuart, Crystals and the Polarising Microscope (Edwards Arnold Publishers Ltd., London, U.K., 1970).

Warenghem, M.

M. Warenghem, C.P. Grover, Mol. Cryst. Liq. Cryst. 159, 15 (1988).

IEEE J. Quantum Electron. (1)

R.S. Craxton, IEEE J. Quantum Electron. QE-17, 1771 (1981).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

M. Warenghem, C.P. Grover, Mol. Cryst. Liq. Cryst. 159, 15 (1988).

Opt. Commun. (1)

W. Seka et al., Opt. Commun. 34, 469 (1980).
[CrossRef]

Sov. Phys. Dokl. (1)

M.G. Serbulenko, V.M Grika, Sov. Phys. Dokl. 25, 235 (1980).

Other (3)

N.H. Hartshorne, A. Stuart, Crystals and the Polarising Microscope (Edwards Arnold Publishers Ltd., London, U.K., 1970).

Laboratory for Laser Energetics LLE Review63, NTIS document No. DOE/SF/19460-91, 1995 (unpublished), p. 99.

Laboratory for Laser Energetics LLE Review45, NTIS document No. DOE/DP40200-149, 1990 (unpublished), p. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1
Figure 1

(a) Off-line method to determine orientation of the optic axis of a birefringent KDP wedge with respect to gravity (P, A are crossed polarizer/analyzer pair), (b) The crystal’s extraordinary axis is orthogonal to the fringes shown in the CCD image, and is referenced to gravity by means of a plumb line, also shown in (b).

Figure 2
Figure 2

Azimuthal orientation of the FCCs. The doubler ordinary axis was clocked 34.8° to the input, horizontal polarization. The tripler ordinary axis was orthogonal to the doubler ordinary axis.

Figure 3
Figure 3

(a) Off-line tuning technique for the frequency-conversion crystals (FCCs). A small-aperture (1-cm) beam is focused with a 0.5-m-focal-length lens through the FCCs onto a CCD camera; (b) Resulting spatial pattern on the CCD. By identifying the ray in the converging beam that generates optimum UV, indicated by an “x,” the necessary angle tilts of the FCC assembly in each of the two orthogonal directions may be determined.

Figure 4
Figure 4

Experimental setup for off-line tuning of the FCCs The isogyre tens was Flipped out to Fine-tune the crystal tilt angles using the PIN 10-UV diode.

Metrics