Abstract

A general formula is presented for the index measurement of isotropic media. The significance of knowing the beam angle inside anisotropic and nonlinear media for measuring the ordinary and extraordinary refractive indices and the nonlinear susceptibility tensor components is described.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hsu, “Accurate measurement of refractive indices,” Eng. Lab. Notes in Opt. & Phot. News 4 (11), S4-S5 (1993).
  2. H. Hsu, “Study of optical and nonlinear optical characteristics of crystals,” (1976).
  3. W. L. Wolfe, “More on the accurate measurement of refractive indices,” Eng. Lab. Notes in Opt. & Phot. News 5 (11), (1994).
  4. S. Waldenstreøm, K. Razi Naqvi, “Measurement of refractive indices of prismatic materials,” Eng. & Lab. Notes in Opt. & Phot. News 7 (2), (1996).
  5. F. Zernike, J. E. Midwinter, Applied nonlinear optics, (John Wiley & Sons, New York, 1973).
  6. P. N. Butcher, D. Cotter, The elements of nonlinear optics, (Cambridge Univ. Press, London, 1990).
  7. C. C. Shang, H. Hsu, “The spatial symmetric forms of third-order nonlinear susceptibility,” IEEE J. Quantum Electron., QE-23, 177 (1987).
    [CrossRef]
  8. J. A. Weiss, “HF and CO2 laser measurements of dispersion of nonlinear susceptibility in Zinc blende crystals,” in Optical Properties of Highly Transparent Solids, S. S. Mitra, B. Nendow, eds., (Plenum, New York, 1975), p. 339
    [CrossRef]

1996 (1)

S. Waldenstreøm, K. Razi Naqvi, “Measurement of refractive indices of prismatic materials,” Eng. & Lab. Notes in Opt. & Phot. News 7 (2), (1996).

1994 (1)

W. L. Wolfe, “More on the accurate measurement of refractive indices,” Eng. Lab. Notes in Opt. & Phot. News 5 (11), (1994).

1993 (1)

H. Hsu, “Accurate measurement of refractive indices,” Eng. Lab. Notes in Opt. & Phot. News 4 (11), S4-S5 (1993).

1987 (1)

C. C. Shang, H. Hsu, “The spatial symmetric forms of third-order nonlinear susceptibility,” IEEE J. Quantum Electron., QE-23, 177 (1987).
[CrossRef]

Butcher, P. N.

P. N. Butcher, D. Cotter, The elements of nonlinear optics, (Cambridge Univ. Press, London, 1990).

Cotter, D.

P. N. Butcher, D. Cotter, The elements of nonlinear optics, (Cambridge Univ. Press, London, 1990).

Hsu, H.

H. Hsu, “Accurate measurement of refractive indices,” Eng. Lab. Notes in Opt. & Phot. News 4 (11), S4-S5 (1993).

C. C. Shang, H. Hsu, “The spatial symmetric forms of third-order nonlinear susceptibility,” IEEE J. Quantum Electron., QE-23, 177 (1987).
[CrossRef]

H. Hsu, “Study of optical and nonlinear optical characteristics of crystals,” (1976).

Midwinter, J. E.

F. Zernike, J. E. Midwinter, Applied nonlinear optics, (John Wiley & Sons, New York, 1973).

Razi Naqvi, K.

S. Waldenstreøm, K. Razi Naqvi, “Measurement of refractive indices of prismatic materials,” Eng. & Lab. Notes in Opt. & Phot. News 7 (2), (1996).

Shang, C. C.

C. C. Shang, H. Hsu, “The spatial symmetric forms of third-order nonlinear susceptibility,” IEEE J. Quantum Electron., QE-23, 177 (1987).
[CrossRef]

Waldenstreøm, S.

S. Waldenstreøm, K. Razi Naqvi, “Measurement of refractive indices of prismatic materials,” Eng. & Lab. Notes in Opt. & Phot. News 7 (2), (1996).

Weiss, J. A.

J. A. Weiss, “HF and CO2 laser measurements of dispersion of nonlinear susceptibility in Zinc blende crystals,” in Optical Properties of Highly Transparent Solids, S. S. Mitra, B. Nendow, eds., (Plenum, New York, 1975), p. 339
[CrossRef]

Wolfe, W. L.

W. L. Wolfe, “More on the accurate measurement of refractive indices,” Eng. Lab. Notes in Opt. & Phot. News 5 (11), (1994).

Zernike, F.

F. Zernike, J. E. Midwinter, Applied nonlinear optics, (John Wiley & Sons, New York, 1973).

Eng. & Lab. Notes in Opt. & Phot. News (1)

S. Waldenstreøm, K. Razi Naqvi, “Measurement of refractive indices of prismatic materials,” Eng. & Lab. Notes in Opt. & Phot. News 7 (2), (1996).

Eng. Lab. Notes in Opt. & Phot. News (2)

H. Hsu, “Accurate measurement of refractive indices,” Eng. Lab. Notes in Opt. & Phot. News 4 (11), S4-S5 (1993).

W. L. Wolfe, “More on the accurate measurement of refractive indices,” Eng. Lab. Notes in Opt. & Phot. News 5 (11), (1994).

IEEE J. Quantum Electron. (1)

C. C. Shang, H. Hsu, “The spatial symmetric forms of third-order nonlinear susceptibility,” IEEE J. Quantum Electron., QE-23, 177 (1987).
[CrossRef]

Other (4)

J. A. Weiss, “HF and CO2 laser measurements of dispersion of nonlinear susceptibility in Zinc blende crystals,” in Optical Properties of Highly Transparent Solids, S. S. Mitra, B. Nendow, eds., (Plenum, New York, 1975), p. 339
[CrossRef]

H. Hsu, “Study of optical and nonlinear optical characteristics of crystals,” (1976).

F. Zernike, J. E. Midwinter, Applied nonlinear optics, (John Wiley & Sons, New York, 1973).

P. N. Butcher, D. Cotter, The elements of nonlinear optics, (Cambridge Univ. Press, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Figure 1
Figure 1

Top view of prism wedge orientation for refractive index measurement.

Figure 2
Figure 2

Crystal orientation of prism wedge

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n   sin   α = sin   θ 1
n   cos   α = sin   θ 2 + cos   δ   sin   θ 1 / sin δ
n = sin 2 1 + sin 2 2 + 2 cos   sin 1 sin 2 sin
n = sin   θ 2 / sin δ
P x = 2 d 15 E x E z - 2 d 22 E x E y
P y = d 22 E y 2 - E x 2 + 2 d 15 E y E z
P z = d 31 E x 2 + E y 2 + d 33 E z 2
P x = 0
P y = d 22 E y 2 + 2 d 15 E y E z
P z = d 31 E y 2 + d 33 E z 2
P z = d 31 E x 2 + d 32 E y 2 + d 33 E z 2 + 2 d 34 E y E z + 2 d 35 E z E x + 2 d 36 E x E y
P z = d 31 E x 2 + d 32 E y 2 + 2 d 36 E x E y
E x = E   Sin ϕ   Sin α
E y = E   Sin ϕ   Cos α
E z = E   Cos ϕ

Metrics