Abstract

The strong absorption of tissue water is responsible for the low ablation threshold for biological tissues at the Er:YAG and Er:YSGG laser wavelengths. These lasers are therefore considered to be promising tools for medical treatments. As the existing transmission systems are still unsatisfactory, three types of liquid-filled light guides are investigated here as alternatives to conventional near-IR fibers. In addition to mechanical advantages, the minimum attenuation is below 3 dB/m, and losses at bending radii down to 20 mm are negligible. The maximum output energy densities of 14.2 J/cm2 (free-running Er:YAG) or power densities of 7 MW/cm2 (Q-switched Er:YAG) are sufficient for soft-tissue ablation. When the liquid was circulated, much higher energy densities, exceeding the hard-tissue ablation threshold, were achieved. These properties make liquid-core light guides promising delivery systems for many near-IR applications, including medical ones.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Dickinson, A. Charlton, T. A. King, A. J. Freemont, R. Bramley, “Studies of Er-YAG laser interactions with soft tissue,” Lasers Med. Sci. 6, 125–131 (1990).
    [CrossRef]
  2. I. M. Rizoiu, L. G. DeShazer, L. R. Eversole, “Soft tissue cutting with a pulsed 30-Hz Er,Cr:YSGG laser,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 273–283 (1995).
    [CrossRef]
  3. C. Cozean, “Er:YAG laser in dentistry and ophthalmology,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 284–295, (1995).
    [CrossRef]
  4. S. Hohenleutner, O. Bespalova, U. Wlotzke, U. Hohenleutner, M. Landthaler, “Photoablation der Haut mit einem leistungsstarken Er:YAG-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 273–276.
  5. M. H. Niemz, Laser–Tissue Interactions—Fundamentals and Applications (Springer-Verlag, Berlin, Heidelberg, New York, 1996), pp. 149–232.
  6. H. Kar, H. Ringelhan, “Grundlagen und Technik der Photoablation,” in Advances in Laser Medicine, G. J. Müller, H.-P. Berlien, eds. (Ecomed, Landsberg/Lech, Germany, 1992), Vol. 6, pp. 27–31.
  7. E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
    [CrossRef]
  8. Ref. 6, pp. 147–162, 192–193.
  9. C. Deuerling, W. Prettl, M. Nuebler-Moritz, H. Niederdellmann, P. Hering, W. Falkenstein, B. Rückle, “Transmission systems for the Er:YAG laser (2.94 µm)—state of the art,” in Laser in Forschung und Technik, W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein, W. Zinth, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 754–757; in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 548–551.
  10. I. Gannot, S. Schründer, T. Ertl, J. Tschepe, J. Dror, G. Müller, N. Croitoru, “Flexible waveguides for the delivery of high power Er-YAG laser radiation,” in Optical Fibers in Medicine VIII, A. Katzir, ed. Proc. SPIE1893, 188–194 (1993).
    [CrossRef]
  11. I. Gannot, J. Dror, N. Croitoru, S. Schründer, J. Tschepe, T. Ertl, G. Müller, “Er-YAG laser flexible waveguides,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 20–26 (1994).
    [CrossRef]
  12. M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
    [CrossRef]
  13. R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguide for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
    [CrossRef] [PubMed]
  14. E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
    [CrossRef]
  15. J. Stone, “Optical transmission loss in liquid-core hollow fibers,” IEEE J. Quantum Electron. QE-8, 386–388 (1972).
    [CrossRef]
  16. J. Stone, “Optical transmission in liquid-core quartz fibers,” Appl. Phys. Lett. 20, 239–240 (1972).
    [CrossRef]
  17. G. J. Ogilvie, R. J. Esdaile, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
    [CrossRef]
  18. G. Nath, “Biegsamer Lichtleiter,” German patent2,352,670 (30April1975).
  19. G. Nath, “Biegsamer Lichtleiter,” German patent2,424,620 (4December1975).
  20. M. Haisch, “Untersuchungen über Lichtleiter für die Übertragung hoher Laserenergien: —Ray-Tracing-Rechnungen, —Lichtleiter mit flüssigem Kern,” 160 (Max-Planck-Institut für Quantenoptik, Garching, Germany, 1991).
  21. H. H. Marvin, “The selective transmission and the dispersion of liquid chlorides,” Phys. Rev. 34, 161–186 (1912).
  22. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  23. I. H. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2, 1103–1107 (1963).
    [CrossRef]
  24. J. C. Seferis, “Refractive indices of polymers,” in Polymer Handbook, 3rd ed., J. Brandrup, E. H. Immergut, eds. (Wiley, New York, 1989), pp. VI/451–VI/461.
  25. J. P. Dakin, W. A. Gambling, D. N. Payne, H. R. D. Sunak, “Launching into glass-fibre optical waveguides,” Opt. Commun. 4, 354–357 (1972).
    [CrossRef]
  26. A. K. Majumdar, E. D. Hinkley, R. T. Menzies, “Infrared transmission at the 3.39 µm helium–neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Electron. QE-15, 408–410 (1979).
    [CrossRef]
  27. H. Lengfellner, S. Zeuner, W. Prettl, K. F. Renk, “Thermoelectric effect in normal-state YBa2Cu3O7-δ films,” Europhys. Lett. 25, 375–378 (1994).
    [CrossRef]
  28. K. F. Renk, J. Betz, S. Zeuner, H. Lengfellner, W. Prettl, “Thermopile effect due to laser radiation heating in thin films of high-Tc materials,” Physica C 235-240, 37–40 (1994).
    [CrossRef]
  29. M. Kauf, S. Schuberth, J. Hutfless, J. Betz, S. Zeuner, H. Lengfellner, “Atomlagen-Thermosäule—Ein neuartiger Detektor für die Laserstrahldiagnose,” Laser Mag. 5, 12–16 (1994).
  30. B. L. Rathbun, P. W. Schuessler, “Moisture permeation of polymer sealants and interface modifying films” in Adhesive Chemistry—Developments and Trends, L.-H. Lee, ed. (Plenum, New York, 1984), pp. 785–798 and literature cited therein.
  31. S. Diemer, W. Fuss, M. Haisch, J. Meister, P. Hering, “Liquid light guides for 2.94 µm,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 88–94 (1995).
    [CrossRef]
  32. S. V. Gangal, “Tetrafluoroethylene polymers,” in Encyclopedia of Polymer Science and Engineering, Vol. 16, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, eds. (Wiley, New York, 1989), Vol. 16, pp. 577–648.
  33. Calculated from the data of H. Gerstenberger, “Zur Durchlässigkeit von Wasser durch die Wandungen von Kunststoffflaschen,” GIT Fachz. Lab. 38, 279–284 (1994) and the nominal wall thickness of 0.76 mm from C. Morel, Product Information [Nalge (Europe) Inc., Hereford, UK].
  34. H. Ehrich, B. Hasse, M. Mausbach, K. G. Müller, “Plasma deposition of thin films utilizing the anodic vacuum arc,” IEEE Trans. Plasma Sci. 18, 895–903 (1990).
    [CrossRef]
  35. J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
    [CrossRef]
  36. C. A. Sperati, “Physical constants of fluoropolymers,” in Polymer Handbook, 3rd ed., J. Brandrup, E. H. Immergut, eds. (Wiley, New York, 1989), pp. V/35–V/59.
  37. Gmelins Handbuch der anorganischen Chemie, “Kohlenstoff,”Part B, 8th ed. (Verlag Chemie, Weinheim, Germany, 1968), pp. 923–933.
  38. J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, P. Hering, “Liquid-core fused-silica capillary lightguides for applications in the UV/VIS and NIR spectral range,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 58–66 (1997).
    [CrossRef]
  39. S. Klein, J. Meister, S. Diemer, R. Jung, W. Fuss, P. Hering, “High-power laser waveguide with a circulating liquid core for IR applications,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 155–163 (1997).
    [CrossRef]

1996 (1)

1995 (1)

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

1994 (4)

H. Lengfellner, S. Zeuner, W. Prettl, K. F. Renk, “Thermoelectric effect in normal-state YBa2Cu3O7-δ films,” Europhys. Lett. 25, 375–378 (1994).
[CrossRef]

K. F. Renk, J. Betz, S. Zeuner, H. Lengfellner, W. Prettl, “Thermopile effect due to laser radiation heating in thin films of high-Tc materials,” Physica C 235-240, 37–40 (1994).
[CrossRef]

M. Kauf, S. Schuberth, J. Hutfless, J. Betz, S. Zeuner, H. Lengfellner, “Atomlagen-Thermosäule—Ein neuartiger Detektor für die Laserstrahldiagnose,” Laser Mag. 5, 12–16 (1994).

Calculated from the data of H. Gerstenberger, “Zur Durchlässigkeit von Wasser durch die Wandungen von Kunststoffflaschen,” GIT Fachz. Lab. 38, 279–284 (1994) and the nominal wall thickness of 0.76 mm from C. Morel, Product Information [Nalge (Europe) Inc., Hereford, UK].

1990 (2)

H. Ehrich, B. Hasse, M. Mausbach, K. G. Müller, “Plasma deposition of thin films utilizing the anodic vacuum arc,” IEEE Trans. Plasma Sci. 18, 895–903 (1990).
[CrossRef]

M. R. Dickinson, A. Charlton, T. A. King, A. J. Freemont, R. Bramley, “Studies of Er-YAG laser interactions with soft tissue,” Lasers Med. Sci. 6, 125–131 (1990).
[CrossRef]

1979 (1)

A. K. Majumdar, E. D. Hinkley, R. T. Menzies, “Infrared transmission at the 3.39 µm helium–neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Electron. QE-15, 408–410 (1979).
[CrossRef]

1975 (1)

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

1972 (4)

J. Stone, “Optical transmission loss in liquid-core hollow fibers,” IEEE J. Quantum Electron. QE-8, 386–388 (1972).
[CrossRef]

J. Stone, “Optical transmission in liquid-core quartz fibers,” Appl. Phys. Lett. 20, 239–240 (1972).
[CrossRef]

G. J. Ogilvie, R. J. Esdaile, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
[CrossRef]

J. P. Dakin, W. A. Gambling, D. N. Payne, H. R. D. Sunak, “Launching into glass-fibre optical waveguides,” Opt. Commun. 4, 354–357 (1972).
[CrossRef]

1970 (1)

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

1965 (1)

1963 (1)

1912 (1)

H. H. Marvin, “The selective transmission and the dispersion of liquid chlorides,” Phys. Rev. 34, 161–186 (1912).

Abe, S.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Aizawa, M.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Bespalova, O.

S. Hohenleutner, O. Bespalova, U. Wlotzke, U. Hohenleutner, M. Landthaler, “Photoablation der Haut mit einem leistungsstarken Er:YAG-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 273–276.

Betz, J.

M. Kauf, S. Schuberth, J. Hutfless, J. Betz, S. Zeuner, H. Lengfellner, “Atomlagen-Thermosäule—Ein neuartiger Detektor für die Laserstrahldiagnose,” Laser Mag. 5, 12–16 (1994).

K. F. Renk, J. Betz, S. Zeuner, H. Lengfellner, W. Prettl, “Thermopile effect due to laser radiation heating in thin films of high-Tc materials,” Physica C 235-240, 37–40 (1994).
[CrossRef]

Bramley, R.

M. R. Dickinson, A. Charlton, T. A. King, A. J. Freemont, R. Bramley, “Studies of Er-YAG laser interactions with soft tissue,” Lasers Med. Sci. 6, 125–131 (1990).
[CrossRef]

Charlton, A.

M. R. Dickinson, A. Charlton, T. A. King, A. J. Freemont, R. Bramley, “Studies of Er-YAG laser interactions with soft tissue,” Lasers Med. Sci. 6, 125–131 (1990).
[CrossRef]

Cozean, C.

C. Cozean, “Er:YAG laser in dentistry and ophthalmology,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 284–295, (1995).
[CrossRef]

Croitoru, N.

I. Gannot, S. Schründer, T. Ertl, J. Tschepe, J. Dror, G. Müller, N. Croitoru, “Flexible waveguides for the delivery of high power Er-YAG laser radiation,” in Optical Fibers in Medicine VIII, A. Katzir, ed. Proc. SPIE1893, 188–194 (1993).
[CrossRef]

I. Gannot, J. Dror, N. Croitoru, S. Schründer, J. Tschepe, T. Ertl, G. Müller, “Er-YAG laser flexible waveguides,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 20–26 (1994).
[CrossRef]

Dakin, J. P.

J. P. Dakin, W. A. Gambling, D. N. Payne, H. R. D. Sunak, “Launching into glass-fibre optical waveguides,” Opt. Commun. 4, 354–357 (1972).
[CrossRef]

DeShazer, L. G.

I. M. Rizoiu, L. G. DeShazer, L. R. Eversole, “Soft tissue cutting with a pulsed 30-Hz Er,Cr:YSGG laser,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 273–283 (1995).
[CrossRef]

Deuerling, C.

C. Deuerling, W. Prettl, M. Nuebler-Moritz, H. Niederdellmann, P. Hering, W. Falkenstein, B. Rückle, “Transmission systems for the Er:YAG laser (2.94 µm)—state of the art,” in Laser in Forschung und Technik, W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein, W. Zinth, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 754–757; in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 548–551.

Dickinson, M. R.

M. R. Dickinson, A. Charlton, T. A. King, A. J. Freemont, R. Bramley, “Studies of Er-YAG laser interactions with soft tissue,” Lasers Med. Sci. 6, 125–131 (1990).
[CrossRef]

Diemer, S.

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, P. Hering, “Liquid-core fused-silica capillary lightguides for applications in the UV/VIS and NIR spectral range,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 58–66 (1997).
[CrossRef]

S. Diemer, W. Fuss, M. Haisch, J. Meister, P. Hering, “Liquid light guides for 2.94 µm,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 88–94 (1995).
[CrossRef]

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[CrossRef]

S. Klein, J. Meister, S. Diemer, R. Jung, W. Fuss, P. Hering, “High-power laser waveguide with a circulating liquid core for IR applications,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 155–163 (1997).
[CrossRef]

Dror, J.

I. Gannot, S. Schründer, T. Ertl, J. Tschepe, J. Dror, G. Müller, N. Croitoru, “Flexible waveguides for the delivery of high power Er-YAG laser radiation,” in Optical Fibers in Medicine VIII, A. Katzir, ed. Proc. SPIE1893, 188–194 (1993).
[CrossRef]

I. Gannot, J. Dror, N. Croitoru, S. Schründer, J. Tschepe, T. Ertl, G. Müller, “Er-YAG laser flexible waveguides,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 20–26 (1994).
[CrossRef]

Ehrich, H.

H. Ehrich, B. Hasse, M. Mausbach, K. G. Müller, “Plasma deposition of thin films utilizing the anodic vacuum arc,” IEEE Trans. Plasma Sci. 18, 895–903 (1990).
[CrossRef]

Ertl, T.

I. Gannot, J. Dror, N. Croitoru, S. Schründer, J. Tschepe, T. Ertl, G. Müller, “Er-YAG laser flexible waveguides,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 20–26 (1994).
[CrossRef]

I. Gannot, S. Schründer, T. Ertl, J. Tschepe, J. Dror, G. Müller, N. Croitoru, “Flexible waveguides for the delivery of high power Er-YAG laser radiation,” in Optical Fibers in Medicine VIII, A. Katzir, ed. Proc. SPIE1893, 188–194 (1993).
[CrossRef]

Esdaile, R. J.

G. J. Ogilvie, R. J. Esdaile, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
[CrossRef]

Eversole, L. R.

I. M. Rizoiu, L. G. DeShazer, L. R. Eversole, “Soft tissue cutting with a pulsed 30-Hz Er,Cr:YSGG laser,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 273–283 (1995).
[CrossRef]

Falkenstein, W.

C. Deuerling, W. Prettl, M. Nuebler-Moritz, H. Niederdellmann, P. Hering, W. Falkenstein, B. Rückle, “Transmission systems for the Er:YAG laser (2.94 µm)—state of the art,” in Laser in Forschung und Technik, W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein, W. Zinth, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 754–757; in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 548–551.

Freemont, A. J.

M. R. Dickinson, A. Charlton, T. A. King, A. J. Freemont, R. Bramley, “Studies of Er-YAG laser interactions with soft tissue,” Lasers Med. Sci. 6, 125–131 (1990).
[CrossRef]

Fuss, W.

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[CrossRef]

S. Klein, J. Meister, S. Diemer, R. Jung, W. Fuss, P. Hering, “High-power laser waveguide with a circulating liquid core for IR applications,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 155–163 (1997).
[CrossRef]

S. Diemer, W. Fuss, M. Haisch, J. Meister, P. Hering, “Liquid light guides for 2.94 µm,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 88–94 (1995).
[CrossRef]

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, P. Hering, “Liquid-core fused-silica capillary lightguides for applications in the UV/VIS and NIR spectral range,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 58–66 (1997).
[CrossRef]

Gambling, W. A.

J. P. Dakin, W. A. Gambling, D. N. Payne, H. R. D. Sunak, “Launching into glass-fibre optical waveguides,” Opt. Commun. 4, 354–357 (1972).
[CrossRef]

Gangal, S. V.

S. V. Gangal, “Tetrafluoroethylene polymers,” in Encyclopedia of Polymer Science and Engineering, Vol. 16, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, eds. (Wiley, New York, 1989), Vol. 16, pp. 577–648.

Gannot, I.

I. Gannot, S. Schründer, T. Ertl, J. Tschepe, J. Dror, G. Müller, N. Croitoru, “Flexible waveguides for the delivery of high power Er-YAG laser radiation,” in Optical Fibers in Medicine VIII, A. Katzir, ed. Proc. SPIE1893, 188–194 (1993).
[CrossRef]

I. Gannot, J. Dror, N. Croitoru, S. Schründer, J. Tschepe, T. Ertl, G. Müller, “Er-YAG laser flexible waveguides,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 20–26 (1994).
[CrossRef]

Gerstenberger, H.

Calculated from the data of H. Gerstenberger, “Zur Durchlässigkeit von Wasser durch die Wandungen von Kunststoffflaschen,” GIT Fachz. Lab. 38, 279–284 (1994) and the nominal wall thickness of 0.76 mm from C. Morel, Product Information [Nalge (Europe) Inc., Hereford, UK].

Haisch, M.

M. Haisch, “Untersuchungen über Lichtleiter für die Übertragung hoher Laserenergien: —Ray-Tracing-Rechnungen, —Lichtleiter mit flüssigem Kern,” 160 (Max-Planck-Institut für Quantenoptik, Garching, Germany, 1991).

S. Diemer, W. Fuss, M. Haisch, J. Meister, P. Hering, “Liquid light guides for 2.94 µm,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 88–94 (1995).
[CrossRef]

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[CrossRef]

Harrington, J. A.

Hasse, B.

H. Ehrich, B. Hasse, M. Mausbach, K. G. Müller, “Plasma deposition of thin films utilizing the anodic vacuum arc,” IEEE Trans. Plasma Sci. 18, 895–903 (1990).
[CrossRef]

Hering, P.

C. Deuerling, W. Prettl, M. Nuebler-Moritz, H. Niederdellmann, P. Hering, W. Falkenstein, B. Rückle, “Transmission systems for the Er:YAG laser (2.94 µm)—state of the art,” in Laser in Forschung und Technik, W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein, W. Zinth, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 754–757; in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 548–551.

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[CrossRef]

S. Klein, J. Meister, S. Diemer, R. Jung, W. Fuss, P. Hering, “High-power laser waveguide with a circulating liquid core for IR applications,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 155–163 (1997).
[CrossRef]

S. Diemer, W. Fuss, M. Haisch, J. Meister, P. Hering, “Liquid light guides for 2.94 µm,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 88–94 (1995).
[CrossRef]

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, P. Hering, “Liquid-core fused-silica capillary lightguides for applications in the UV/VIS and NIR spectral range,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 58–66 (1997).
[CrossRef]

Hinkley, E. D.

A. K. Majumdar, E. D. Hinkley, R. T. Menzies, “Infrared transmission at the 3.39 µm helium–neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Electron. QE-15, 408–410 (1979).
[CrossRef]

Hohenleutner, S.

S. Hohenleutner, O. Bespalova, U. Wlotzke, U. Hohenleutner, M. Landthaler, “Photoablation der Haut mit einem leistungsstarken Er:YAG-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 273–276.

Hohenleutner, U.

S. Hohenleutner, O. Bespalova, U. Wlotzke, U. Hohenleutner, M. Landthaler, “Photoablation der Haut mit einem leistungsstarken Er:YAG-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 273–276.

Hutfless, J.

M. Kauf, S. Schuberth, J. Hutfless, J. Betz, S. Zeuner, H. Lengfellner, “Atomlagen-Thermosäule—Ein neuartiger Detektor für die Laserstrahldiagnose,” Laser Mag. 5, 12–16 (1994).

Ippen, E. P.

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

Jung, R.

S. Klein, J. Meister, S. Diemer, R. Jung, W. Fuss, P. Hering, “High-power laser waveguide with a circulating liquid core for IR applications,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 155–163 (1997).
[CrossRef]

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[CrossRef]

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, P. Hering, “Liquid-core fused-silica capillary lightguides for applications in the UV/VIS and NIR spectral range,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 58–66 (1997).
[CrossRef]

Kar, H.

H. Kar, H. Ringelhan, “Grundlagen und Technik der Photoablation,” in Advances in Laser Medicine, G. J. Müller, H.-P. Berlien, eds. (Ecomed, Landsberg/Lech, Germany, 1992), Vol. 6, pp. 27–31.

Kato, Y.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Kauf, M.

M. Kauf, S. Schuberth, J. Hutfless, J. Betz, S. Zeuner, H. Lengfellner, “Atomlagen-Thermosäule—Ein neuartiger Detektor für die Laserstrahldiagnose,” Laser Mag. 5, 12–16 (1994).

King, T. A.

M. R. Dickinson, A. Charlton, T. A. King, A. J. Freemont, R. Bramley, “Studies of Er-YAG laser interactions with soft tissue,” Lasers Med. Sci. 6, 125–131 (1990).
[CrossRef]

Klein, S.

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, P. Hering, “Liquid-core fused-silica capillary lightguides for applications in the UV/VIS and NIR spectral range,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 58–66 (1997).
[CrossRef]

S. Klein, J. Meister, S. Diemer, R. Jung, W. Fuss, P. Hering, “High-power laser waveguide with a circulating liquid core for IR applications,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 155–163 (1997).
[CrossRef]

Kozodoy, R. L.

Kulevskii, L. R.

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Landthaler, M.

S. Hohenleutner, O. Bespalova, U. Wlotzke, U. Hohenleutner, M. Landthaler, “Photoablation der Haut mit einem leistungsstarken Er:YAG-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 273–276.

Lengfellner, H.

M. Kauf, S. Schuberth, J. Hutfless, J. Betz, S. Zeuner, H. Lengfellner, “Atomlagen-Thermosäule—Ein neuartiger Detektor für die Laserstrahldiagnose,” Laser Mag. 5, 12–16 (1994).

H. Lengfellner, S. Zeuner, W. Prettl, K. F. Renk, “Thermoelectric effect in normal-state YBa2Cu3O7-δ films,” Europhys. Lett. 25, 375–378 (1994).
[CrossRef]

K. F. Renk, J. Betz, S. Zeuner, H. Lengfellner, W. Prettl, “Thermopile effect due to laser radiation heating in thin films of high-Tc materials,” Physica C 235-240, 37–40 (1994).
[CrossRef]

Majumdar, A. K.

A. K. Majumdar, E. D. Hinkley, R. T. Menzies, “Infrared transmission at the 3.39 µm helium–neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Electron. QE-15, 408–410 (1979).
[CrossRef]

Malitson, I. H.

Marvin, H. H.

H. H. Marvin, “The selective transmission and the dispersion of liquid chlorides,” Phys. Rev. 34, 161–186 (1912).

Mausbach, M.

H. Ehrich, B. Hasse, M. Mausbach, K. G. Müller, “Plasma deposition of thin films utilizing the anodic vacuum arc,” IEEE Trans. Plasma Sci. 18, 895–903 (1990).
[CrossRef]

Meister, J.

S. Klein, J. Meister, S. Diemer, R. Jung, W. Fuss, P. Hering, “High-power laser waveguide with a circulating liquid core for IR applications,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 155–163 (1997).
[CrossRef]

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[CrossRef]

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, P. Hering, “Liquid-core fused-silica capillary lightguides for applications in the UV/VIS and NIR spectral range,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 58–66 (1997).
[CrossRef]

S. Diemer, W. Fuss, M. Haisch, J. Meister, P. Hering, “Liquid light guides for 2.94 µm,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 88–94 (1995).
[CrossRef]

Menzies, R. T.

A. K. Majumdar, E. D. Hinkley, R. T. Menzies, “Infrared transmission at the 3.39 µm helium–neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Electron. QE-15, 408–410 (1979).
[CrossRef]

Miyagi, M.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Müller, G.

I. Gannot, J. Dror, N. Croitoru, S. Schründer, J. Tschepe, T. Ertl, G. Müller, “Er-YAG laser flexible waveguides,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 20–26 (1994).
[CrossRef]

I. Gannot, S. Schründer, T. Ertl, J. Tschepe, J. Dror, G. Müller, N. Croitoru, “Flexible waveguides for the delivery of high power Er-YAG laser radiation,” in Optical Fibers in Medicine VIII, A. Katzir, ed. Proc. SPIE1893, 188–194 (1993).
[CrossRef]

Müller, K. G.

H. Ehrich, B. Hasse, M. Mausbach, K. G. Müller, “Plasma deposition of thin films utilizing the anodic vacuum arc,” IEEE Trans. Plasma Sci. 18, 895–903 (1990).
[CrossRef]

Murina, T. M.

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Nath, G.

G. Nath, “Biegsamer Lichtleiter,” German patent2,352,670 (30April1975).

G. Nath, “Biegsamer Lichtleiter,” German patent2,424,620 (4December1975).

Niederdellmann, H.

C. Deuerling, W. Prettl, M. Nuebler-Moritz, H. Niederdellmann, P. Hering, W. Falkenstein, B. Rückle, “Transmission systems for the Er:YAG laser (2.94 µm)—state of the art,” in Laser in Forschung und Technik, W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein, W. Zinth, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 754–757; in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 548–551.

Niemz, M. H.

M. H. Niemz, Laser–Tissue Interactions—Fundamentals and Applications (Springer-Verlag, Berlin, Heidelberg, New York, 1996), pp. 149–232.

Nuebler-Moritz, M.

C. Deuerling, W. Prettl, M. Nuebler-Moritz, H. Niederdellmann, P. Hering, W. Falkenstein, B. Rückle, “Transmission systems for the Er:YAG laser (2.94 µm)—state of the art,” in Laser in Forschung und Technik, W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein, W. Zinth, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 754–757; in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 548–551.

Ogilvie, G. J.

G. J. Ogilvie, R. J. Esdaile, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
[CrossRef]

Onodera, S.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Osawa, M.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Osiko, V. V.

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Pagkalinawan, A. T.

Payne, D. N.

J. P. Dakin, W. A. Gambling, D. N. Payne, H. R. D. Sunak, “Launching into glass-fibre optical waveguides,” Opt. Commun. 4, 354–357 (1972).
[CrossRef]

Prettl, W.

H. Lengfellner, S. Zeuner, W. Prettl, K. F. Renk, “Thermoelectric effect in normal-state YBa2Cu3O7-δ films,” Europhys. Lett. 25, 375–378 (1994).
[CrossRef]

K. F. Renk, J. Betz, S. Zeuner, H. Lengfellner, W. Prettl, “Thermopile effect due to laser radiation heating in thin films of high-Tc materials,” Physica C 235-240, 37–40 (1994).
[CrossRef]

C. Deuerling, W. Prettl, M. Nuebler-Moritz, H. Niederdellmann, P. Hering, W. Falkenstein, B. Rückle, “Transmission systems for the Er:YAG laser (2.94 µm)—state of the art,” in Laser in Forschung und Technik, W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein, W. Zinth, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 754–757; in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 548–551.

Prokhorov, A. M.

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Rathbun, B. L.

B. L. Rathbun, P. W. Schuessler, “Moisture permeation of polymer sealants and interface modifying films” in Adhesive Chemistry—Developments and Trends, L.-H. Lee, ed. (Plenum, New York, 1984), pp. 785–798 and literature cited therein.

Renk, K. F.

K. F. Renk, J. Betz, S. Zeuner, H. Lengfellner, W. Prettl, “Thermopile effect due to laser radiation heating in thin films of high-Tc materials,” Physica C 235-240, 37–40 (1994).
[CrossRef]

H. Lengfellner, S. Zeuner, W. Prettl, K. F. Renk, “Thermoelectric effect in normal-state YBa2Cu3O7-δ films,” Europhys. Lett. 25, 375–378 (1994).
[CrossRef]

Ringelhan, H.

H. Kar, H. Ringelhan, “Grundlagen und Technik der Photoablation,” in Advances in Laser Medicine, G. J. Müller, H.-P. Berlien, eds. (Ecomed, Landsberg/Lech, Germany, 1992), Vol. 6, pp. 27–31.

Rizoiu, I. M.

I. M. Rizoiu, L. G. DeShazer, L. R. Eversole, “Soft tissue cutting with a pulsed 30-Hz Er,Cr:YSGG laser,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 273–283 (1995).
[CrossRef]

Rückle, B.

C. Deuerling, W. Prettl, M. Nuebler-Moritz, H. Niederdellmann, P. Hering, W. Falkenstein, B. Rückle, “Transmission systems for the Er:YAG laser (2.94 µm)—state of the art,” in Laser in Forschung und Technik, W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein, W. Zinth, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 754–757; in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 548–551.

Savel’ev, A. D.

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Schründer, S.

I. Gannot, S. Schründer, T. Ertl, J. Tschepe, J. Dror, G. Müller, N. Croitoru, “Flexible waveguides for the delivery of high power Er-YAG laser radiation,” in Optical Fibers in Medicine VIII, A. Katzir, ed. Proc. SPIE1893, 188–194 (1993).
[CrossRef]

I. Gannot, J. Dror, N. Croitoru, S. Schründer, J. Tschepe, T. Ertl, G. Müller, “Er-YAG laser flexible waveguides,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 20–26 (1994).
[CrossRef]

Schuberth, S.

M. Kauf, S. Schuberth, J. Hutfless, J. Betz, S. Zeuner, H. Lengfellner, “Atomlagen-Thermosäule—Ein neuartiger Detektor für die Laserstrahldiagnose,” Laser Mag. 5, 12–16 (1994).

Schuessler, P. W.

B. L. Rathbun, P. W. Schuessler, “Moisture permeation of polymer sealants and interface modifying films” in Adhesive Chemistry—Developments and Trends, L.-H. Lee, ed. (Plenum, New York, 1984), pp. 785–798 and literature cited therein.

Seferis, J. C.

J. C. Seferis, “Refractive indices of polymers,” in Polymer Handbook, 3rd ed., J. Brandrup, E. H. Immergut, eds. (Wiley, New York, 1989), pp. VI/451–VI/461.

Smirnov, V. V.

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Sperati, C. A.

C. A. Sperati, “Physical constants of fluoropolymers,” in Polymer Handbook, 3rd ed., J. Brandrup, E. H. Immergut, eds. (Wiley, New York, 1989), pp. V/35–V/59.

Starikov, B. P.

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Stone, J.

J. Stone, “Optical transmission loss in liquid-core hollow fibers,” IEEE J. Quantum Electron. QE-8, 386–388 (1972).
[CrossRef]

J. Stone, “Optical transmission in liquid-core quartz fibers,” Appl. Phys. Lett. 20, 239–240 (1972).
[CrossRef]

Sunak, H. R. D.

J. P. Dakin, W. A. Gambling, D. N. Payne, H. R. D. Sunak, “Launching into glass-fibre optical waveguides,” Opt. Commun. 4, 354–357 (1972).
[CrossRef]

Timoshechkin, M. I.

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Tschepe, J.

I. Gannot, S. Schründer, T. Ertl, J. Tschepe, J. Dror, G. Müller, N. Croitoru, “Flexible waveguides for the delivery of high power Er-YAG laser radiation,” in Optical Fibers in Medicine VIII, A. Katzir, ed. Proc. SPIE1893, 188–194 (1993).
[CrossRef]

I. Gannot, J. Dror, N. Croitoru, S. Schründer, J. Tschepe, T. Ertl, G. Müller, “Er-YAG laser flexible waveguides,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 20–26 (1994).
[CrossRef]

Watanabe, T.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Wlotzke, U.

S. Hohenleutner, O. Bespalova, U. Wlotzke, U. Hohenleutner, M. Landthaler, “Photoablation der Haut mit einem leistungsstarken Er:YAG-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 273–276.

Zeuner, S.

M. Kauf, S. Schuberth, J. Hutfless, J. Betz, S. Zeuner, H. Lengfellner, “Atomlagen-Thermosäule—Ein neuartiger Detektor für die Laserstrahldiagnose,” Laser Mag. 5, 12–16 (1994).

H. Lengfellner, S. Zeuner, W. Prettl, K. F. Renk, “Thermoelectric effect in normal-state YBa2Cu3O7-δ films,” Europhys. Lett. 25, 375–378 (1994).
[CrossRef]

K. F. Renk, J. Betz, S. Zeuner, H. Lengfellner, W. Prettl, “Thermopile effect due to laser radiation heating in thin films of high-Tc materials,” Physica C 235-240, 37–40 (1994).
[CrossRef]

Zharikov, E. V.

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Zhekov, V. I.

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. Stone, “Optical transmission in liquid-core quartz fibers,” Appl. Phys. Lett. 20, 239–240 (1972).
[CrossRef]

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

Electron. Lett. (1)

G. J. Ogilvie, R. J. Esdaile, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
[CrossRef]

Europhys. Lett. (1)

H. Lengfellner, S. Zeuner, W. Prettl, K. F. Renk, “Thermoelectric effect in normal-state YBa2Cu3O7-δ films,” Europhys. Lett. 25, 375–378 (1994).
[CrossRef]

GIT Fachz. Lab. (1)

Calculated from the data of H. Gerstenberger, “Zur Durchlässigkeit von Wasser durch die Wandungen von Kunststoffflaschen,” GIT Fachz. Lab. 38, 279–284 (1994) and the nominal wall thickness of 0.76 mm from C. Morel, Product Information [Nalge (Europe) Inc., Hereford, UK].

IEEE J. Quantum Electron. (2)

A. K. Majumdar, E. D. Hinkley, R. T. Menzies, “Infrared transmission at the 3.39 µm helium–neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Electron. QE-15, 408–410 (1979).
[CrossRef]

J. Stone, “Optical transmission loss in liquid-core hollow fibers,” IEEE J. Quantum Electron. QE-8, 386–388 (1972).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

H. Ehrich, B. Hasse, M. Mausbach, K. G. Müller, “Plasma deposition of thin films utilizing the anodic vacuum arc,” IEEE Trans. Plasma Sci. 18, 895–903 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

Laser Mag. (1)

M. Kauf, S. Schuberth, J. Hutfless, J. Betz, S. Zeuner, H. Lengfellner, “Atomlagen-Thermosäule—Ein neuartiger Detektor für die Laserstrahldiagnose,” Laser Mag. 5, 12–16 (1994).

Lasers Med. Sci. (1)

M. R. Dickinson, A. Charlton, T. A. King, A. J. Freemont, R. Bramley, “Studies of Er-YAG laser interactions with soft tissue,” Lasers Med. Sci. 6, 125–131 (1990).
[CrossRef]

Opt. Commun. (1)

J. P. Dakin, W. A. Gambling, D. N. Payne, H. R. D. Sunak, “Launching into glass-fibre optical waveguides,” Opt. Commun. 4, 354–357 (1972).
[CrossRef]

Opt. Laser Technol. (1)

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Phys. Rev. (1)

H. H. Marvin, “The selective transmission and the dispersion of liquid chlorides,” Phys. Rev. 34, 161–186 (1912).

Physica C (1)

K. F. Renk, J. Betz, S. Zeuner, H. Lengfellner, W. Prettl, “Thermopile effect due to laser radiation heating in thin films of high-Tc materials,” Physica C 235-240, 37–40 (1994).
[CrossRef]

Sov. J. Quantum Electron. (1)

E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Other (21)

Ref. 6, pp. 147–162, 192–193.

C. Deuerling, W. Prettl, M. Nuebler-Moritz, H. Niederdellmann, P. Hering, W. Falkenstein, B. Rückle, “Transmission systems for the Er:YAG laser (2.94 µm)—state of the art,” in Laser in Forschung und Technik, W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein, W. Zinth, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 754–757; in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 548–551.

I. Gannot, S. Schründer, T. Ertl, J. Tschepe, J. Dror, G. Müller, N. Croitoru, “Flexible waveguides for the delivery of high power Er-YAG laser radiation,” in Optical Fibers in Medicine VIII, A. Katzir, ed. Proc. SPIE1893, 188–194 (1993).
[CrossRef]

I. Gannot, J. Dror, N. Croitoru, S. Schründer, J. Tschepe, T. Ertl, G. Müller, “Er-YAG laser flexible waveguides,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 20–26 (1994).
[CrossRef]

I. M. Rizoiu, L. G. DeShazer, L. R. Eversole, “Soft tissue cutting with a pulsed 30-Hz Er,Cr:YSGG laser,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 273–283 (1995).
[CrossRef]

C. Cozean, “Er:YAG laser in dentistry and ophthalmology,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 284–295, (1995).
[CrossRef]

S. Hohenleutner, O. Bespalova, U. Wlotzke, U. Hohenleutner, M. Landthaler, “Photoablation der Haut mit einem leistungsstarken Er:YAG-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 273–276.

M. H. Niemz, Laser–Tissue Interactions—Fundamentals and Applications (Springer-Verlag, Berlin, Heidelberg, New York, 1996), pp. 149–232.

H. Kar, H. Ringelhan, “Grundlagen und Technik der Photoablation,” in Advances in Laser Medicine, G. J. Müller, H.-P. Berlien, eds. (Ecomed, Landsberg/Lech, Germany, 1992), Vol. 6, pp. 27–31.

J. C. Seferis, “Refractive indices of polymers,” in Polymer Handbook, 3rd ed., J. Brandrup, E. H. Immergut, eds. (Wiley, New York, 1989), pp. VI/451–VI/461.

G. Nath, “Biegsamer Lichtleiter,” German patent2,352,670 (30April1975).

G. Nath, “Biegsamer Lichtleiter,” German patent2,424,620 (4December1975).

M. Haisch, “Untersuchungen über Lichtleiter für die Übertragung hoher Laserenergien: —Ray-Tracing-Rechnungen, —Lichtleiter mit flüssigem Kern,” 160 (Max-Planck-Institut für Quantenoptik, Garching, Germany, 1991).

B. L. Rathbun, P. W. Schuessler, “Moisture permeation of polymer sealants and interface modifying films” in Adhesive Chemistry—Developments and Trends, L.-H. Lee, ed. (Plenum, New York, 1984), pp. 785–798 and literature cited therein.

S. Diemer, W. Fuss, M. Haisch, J. Meister, P. Hering, “Liquid light guides for 2.94 µm,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 88–94 (1995).
[CrossRef]

S. V. Gangal, “Tetrafluoroethylene polymers,” in Encyclopedia of Polymer Science and Engineering, Vol. 16, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, eds. (Wiley, New York, 1989), Vol. 16, pp. 577–648.

J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996).
[CrossRef]

C. A. Sperati, “Physical constants of fluoropolymers,” in Polymer Handbook, 3rd ed., J. Brandrup, E. H. Immergut, eds. (Wiley, New York, 1989), pp. V/35–V/59.

Gmelins Handbuch der anorganischen Chemie, “Kohlenstoff,”Part B, 8th ed. (Verlag Chemie, Weinheim, Germany, 1968), pp. 923–933.

J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, P. Hering, “Liquid-core fused-silica capillary lightguides for applications in the UV/VIS and NIR spectral range,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 58–66 (1997).
[CrossRef]

S. Klein, J. Meister, S. Diemer, R. Jung, W. Fuss, P. Hering, “High-power laser waveguide with a circulating liquid core for IR applications,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 155–163 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Absorption coefficient α(λ) of liquid H2O (solid curve) and threshold energy density (TED) for photoablation in soft tissue (dotted curve) as a function of the wavelength (adapted from Kar and Ringelhan6). The dashed vertical lines indicate IR laser wavelengths of a, Nd:YAG (1.064 µm); b, Ho:YAG (2.1 µm); c, Er:YSGG (2.79 µm); d, Er:YAG (2.94 µm); e, CO2 (10.6 µm) lasers.

Fig. 2
Fig. 2

Components of a liquid light guide.

Fig. 3
Fig. 3

Experimental setup of the laser measurements. ALT, atomic-layer-thermopile.

Fig. 4
Fig. 4

Setup for the light guide with the circulating liquid core.

Fig. 5
Fig. 5

Fourier-transform IR spectra of CCl4 with various amounts of water (path length 10 cm). Magnified inset: increase of the absorption at 2.94 µm as a function of the water content.31

Fig. 6
Fig. 6

Transmission of a CCl4-filled FEP light guide (1.6-mm ID, free-running Er:YAG and Er:YSGG lasers).

Fig. 7
Fig. 7

Transmission as a function of the bending radius of a 180° bent CCl4-filled FEP light guide (1.6-mm ID, free-running Er:YAG and Er:YSGG lasers). For Q-switched Er:YAG radiation the results (not shown) were similar.

Fig. 8
Fig. 8

Top, absorption spectrum of a CCl4-filled fused-silica capillary 1.13 m long; bottom, refractive indices of fused silica and CCl4 as functions of the wavelength.

Tables (3)

Tables Icon

Table 1 Calculated Refractive Indices of CCl4,21 Fused Silica,22 CaF2,23 and FEP at the Er:YAG and the Er:YSGG Wavelengths

Tables Icon

Table 2 Permeability P of FEP to H2O and CCl4 for a Tube of 1-m Length, 1.6-mm ID, and a 0.3-mm Wall Thickness

Tables Icon

Table 3 Current Experimental Results Obtained with CCl4-Filled FEP (1.6-mm ID) and Fused-Silica (0.54-mm ID) Light Guides

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

NA=ncore2-nclad21/2,  0.2NA0.6.
Rwnw-ncnw+nc2+nw-nairnw+nair2nw-nairnw+nair2,

Metrics