Abstract

The role of modeling in designing new treatment protocols and instruments is discussed. A computer program for modeling laser–tissue interaction named latis is described. Interactions are divided into the processes of laser propagation, thermal effects, material effects, and hydrodynamics. Full coupling of the processes is taken into consideration. Applications in photothermal and photomechanical laser–tissue interactions are briefly discussed. A detailed description is given of a particular application of latis to study the effects of dynamic optical properties on dosimetry in photothermal therapy. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered. It is found that proper accounting of dynamical optical properties is important for accurate dosimetry modeling.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Welch, M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
    [CrossRef]
  2. B.-M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, M. Motamedi, “Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue,” IEEE J. Selec. Top. Quantum Electron. 4, 922–933 (1996).
  3. G. B. Zimmerman, W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Commun. Plasma Phys. Controlled Fusion 11, 51–61 (1975).
  4. P. F. DuBois, “Making applications programmable,” Comput. Phys. 8, 70–74 (1994).
    [CrossRef]
  5. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  6. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  7. W. E. Alley, “A Maxwell equation solver for the simulation of moderately intense ultra-short pulse laser experiments,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1992), pp. 160–165.
  8. Y. I. Cho, ed., “Bioengineering heat transfer,” in Advances in Heat Transfer (Academic, San Diego, Calif., 1992), Vol. 22.
  9. C.-S. Orr, R. C. Eberhart, “Overview of bioheat transfer,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 367–384.
    [CrossRef]
  10. R. M. More, K. H. Warren, D. A. Young, G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059–3078 (1988).
    [CrossRef]
  11. D. A. Young, E. M. Corey, “A new global equation of state for hot, dense matter,” J. Appl. Phys. 78, 3748–3755 (1995).
    [CrossRef]
  12. L. Haar, J. S. Gallagher, G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).
  13. J. Pearce, S. Thomsen, “Rate process analysis of thermal damage,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 561–608.
    [CrossRef]
  14. R. A. London, M. E. Glinsky, G. B. Zimmerman, D. C. Eder, S. L. Jacques, “Coupled light transport–heat diffusion model for laser dosimetry with dynamic optical properties,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 434–442 (1995).
    [CrossRef]
  15. M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program latis,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 262–272 (1995).
    [CrossRef]
  16. M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Computer modeling of endovascular patch welding using temperature feedback,” in Medical Applications of Lasers III, F. Laffitte, ed., Proc. SPIE2623, 349–358 (1996).
    [CrossRef]
  17. D. J. Maitland, D. C. Eder, R. A. London, M. E. Glinsky, B. A. Soltz, “Dynamic simulations of tissue welding,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 234–242 (1996).
  18. R. A. London, D. S. Bailey, D. A. Young, W. E. Alley, M. D. Feit, A. M. Rubenchik, J. Neev, “Computational modeling of ultra-short-pulse ablation of enamel,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 233–244 (1996).
    [CrossRef]
  19. M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).
  20. G. Muller, A. Roggan, Laser-Induced Interstitial Thermotherapy (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1995).
  21. S. L. Jacques, M. O. Gaeeni, “Thermally induced changes in optical properties of heart,” in Proceedings of the 11th International Conference of the IEEE Engineering in Medicine and Biology (IEEE, New York, 1989), pp. 1199–1200.
  22. J. W. Valvano, “Tissue thermal properties and perfusion,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 445–488.
    [CrossRef]
  23. T. N. Glenn, S. Rastegar, S. L. Jacques, F. Tittel, “Finite element analysis of temperature-controlled laser coagulation of biological tissue,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 383–390 (1994).
  24. B. Lobel, O. Eyal, E. Belotserkovsky, O. Shenfeld, N. Kariv, B. Goldwasser, A. Katzir, “In vivo CO2 laser rat urinary bladder welding with silver halide fiber optic radiometric temperature control,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 517–522 (1995).
  25. I. Cilesiz, E. K. Chan, A. J. Welch, S. L. Thomsen, “Controlled temperature tissue fusion: Ho:YAG laser welding of rat intestine in vivo,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 523–534 (1995).

1996 (1)

B.-M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, M. Motamedi, “Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue,” IEEE J. Selec. Top. Quantum Electron. 4, 922–933 (1996).

1995 (1)

D. A. Young, E. M. Corey, “A new global equation of state for hot, dense matter,” J. Appl. Phys. 78, 3748–3755 (1995).
[CrossRef]

1994 (1)

P. F. DuBois, “Making applications programmable,” Comput. Phys. 8, 70–74 (1994).
[CrossRef]

1988 (1)

R. M. More, K. H. Warren, D. A. Young, G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059–3078 (1988).
[CrossRef]

1987 (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

1975 (1)

G. B. Zimmerman, W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Commun. Plasma Phys. Controlled Fusion 11, 51–61 (1975).

1941 (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Alley, W. E.

W. E. Alley, “A Maxwell equation solver for the simulation of moderately intense ultra-short pulse laser experiments,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1992), pp. 160–165.

R. A. London, D. S. Bailey, D. A. Young, W. E. Alley, M. D. Feit, A. M. Rubenchik, J. Neev, “Computational modeling of ultra-short-pulse ablation of enamel,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 233–244 (1996).
[CrossRef]

Alter, C. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Amendt, P. A.

M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).

Bailey, D. S.

M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).

R. A. London, D. S. Bailey, D. A. Young, W. E. Alley, M. D. Feit, A. M. Rubenchik, J. Neev, “Computational modeling of ultra-short-pulse ablation of enamel,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 233–244 (1996).
[CrossRef]

Belotserkovsky, E.

B. Lobel, O. Eyal, E. Belotserkovsky, O. Shenfeld, N. Kariv, B. Goldwasser, A. Katzir, “In vivo CO2 laser rat urinary bladder welding with silver halide fiber optic radiometric temperature control,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 517–522 (1995).

Chan, E. K.

I. Cilesiz, E. K. Chan, A. J. Welch, S. L. Thomsen, “Controlled temperature tissue fusion: Ho:YAG laser welding of rat intestine in vivo,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 523–534 (1995).

Cilesiz, I.

I. Cilesiz, E. K. Chan, A. J. Welch, S. L. Thomsen, “Controlled temperature tissue fusion: Ho:YAG laser welding of rat intestine in vivo,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 523–534 (1995).

Corey, E. M.

D. A. Young, E. M. Corey, “A new global equation of state for hot, dense matter,” J. Appl. Phys. 78, 3748–3755 (1995).
[CrossRef]

DuBois, P. F.

P. F. DuBois, “Making applications programmable,” Comput. Phys. 8, 70–74 (1994).
[CrossRef]

Eberhart, R. C.

C.-S. Orr, R. C. Eberhart, “Overview of bioheat transfer,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 367–384.
[CrossRef]

Eder, D. C.

D. J. Maitland, D. C. Eder, R. A. London, M. E. Glinsky, B. A. Soltz, “Dynamic simulations of tissue welding,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 234–242 (1996).

R. A. London, M. E. Glinsky, G. B. Zimmerman, D. C. Eder, S. L. Jacques, “Coupled light transport–heat diffusion model for laser dosimetry with dynamic optical properties,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 434–442 (1995).
[CrossRef]

Eyal, O.

B. Lobel, O. Eyal, E. Belotserkovsky, O. Shenfeld, N. Kariv, B. Goldwasser, A. Katzir, “In vivo CO2 laser rat urinary bladder welding with silver halide fiber optic radiometric temperature control,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 517–522 (1995).

Feit, M. D.

R. A. London, D. S. Bailey, D. A. Young, W. E. Alley, M. D. Feit, A. M. Rubenchik, J. Neev, “Computational modeling of ultra-short-pulse ablation of enamel,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 233–244 (1996).
[CrossRef]

Gaeeni, M. O.

S. L. Jacques, M. O. Gaeeni, “Thermally induced changes in optical properties of heart,” in Proceedings of the 11th International Conference of the IEEE Engineering in Medicine and Biology (IEEE, New York, 1989), pp. 1199–1200.

Gallagher, J. S.

L. Haar, J. S. Gallagher, G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).

Glenn, T. N.

T. N. Glenn, S. Rastegar, S. L. Jacques, F. Tittel, “Finite element analysis of temperature-controlled laser coagulation of biological tissue,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 383–390 (1994).

Glinsky, M. E.

D. J. Maitland, D. C. Eder, R. A. London, M. E. Glinsky, B. A. Soltz, “Dynamic simulations of tissue welding,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 234–242 (1996).

M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program latis,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 262–272 (1995).
[CrossRef]

R. A. London, M. E. Glinsky, G. B. Zimmerman, D. C. Eder, S. L. Jacques, “Coupled light transport–heat diffusion model for laser dosimetry with dynamic optical properties,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 434–442 (1995).
[CrossRef]

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Computer modeling of endovascular patch welding using temperature feedback,” in Medical Applications of Lasers III, F. Laffitte, ed., Proc. SPIE2623, 349–358 (1996).
[CrossRef]

Goldwasser, B.

B. Lobel, O. Eyal, E. Belotserkovsky, O. Shenfeld, N. Kariv, B. Goldwasser, A. Katzir, “In vivo CO2 laser rat urinary bladder welding with silver halide fiber optic radiometric temperature control,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 517–522 (1995).

Greenstein, J. L.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Haar, L.

L. Haar, J. S. Gallagher, G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).

Henyey, L. G.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Jacques, S. L.

B.-M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, M. Motamedi, “Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue,” IEEE J. Selec. Top. Quantum Electron. 4, 922–933 (1996).

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program latis,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 262–272 (1995).
[CrossRef]

M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).

T. N. Glenn, S. Rastegar, S. L. Jacques, F. Tittel, “Finite element analysis of temperature-controlled laser coagulation of biological tissue,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 383–390 (1994).

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Computer modeling of endovascular patch welding using temperature feedback,” in Medical Applications of Lasers III, F. Laffitte, ed., Proc. SPIE2623, 349–358 (1996).
[CrossRef]

R. A. London, M. E. Glinsky, G. B. Zimmerman, D. C. Eder, S. L. Jacques, “Coupled light transport–heat diffusion model for laser dosimetry with dynamic optical properties,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 434–442 (1995).
[CrossRef]

S. L. Jacques, M. O. Gaeeni, “Thermally induced changes in optical properties of heart,” in Proceedings of the 11th International Conference of the IEEE Engineering in Medicine and Biology (IEEE, New York, 1989), pp. 1199–1200.

Kariv, N.

B. Lobel, O. Eyal, E. Belotserkovsky, O. Shenfeld, N. Kariv, B. Goldwasser, A. Katzir, “In vivo CO2 laser rat urinary bladder welding with silver halide fiber optic radiometric temperature control,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 517–522 (1995).

Katzir, A.

B. Lobel, O. Eyal, E. Belotserkovsky, O. Shenfeld, N. Kariv, B. Goldwasser, A. Katzir, “In vivo CO2 laser rat urinary bladder welding with silver halide fiber optic radiometric temperature control,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 517–522 (1995).

Kell, G. S.

L. Haar, J. S. Gallagher, G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).

Kim, B.-M.

B.-M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, M. Motamedi, “Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue,” IEEE J. Selec. Top. Quantum Electron. 4, 922–933 (1996).

Kruer, W. L.

G. B. Zimmerman, W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Commun. Plasma Phys. Controlled Fusion 11, 51–61 (1975).

Lobel, B.

B. Lobel, O. Eyal, E. Belotserkovsky, O. Shenfeld, N. Kariv, B. Goldwasser, A. Katzir, “In vivo CO2 laser rat urinary bladder welding with silver halide fiber optic radiometric temperature control,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 517–522 (1995).

London, R. A.

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Computer modeling of endovascular patch welding using temperature feedback,” in Medical Applications of Lasers III, F. Laffitte, ed., Proc. SPIE2623, 349–358 (1996).
[CrossRef]

R. A. London, D. S. Bailey, D. A. Young, W. E. Alley, M. D. Feit, A. M. Rubenchik, J. Neev, “Computational modeling of ultra-short-pulse ablation of enamel,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 233–244 (1996).
[CrossRef]

R. A. London, M. E. Glinsky, G. B. Zimmerman, D. C. Eder, S. L. Jacques, “Coupled light transport–heat diffusion model for laser dosimetry with dynamic optical properties,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 434–442 (1995).
[CrossRef]

M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).

D. J. Maitland, D. C. Eder, R. A. London, M. E. Glinsky, B. A. Soltz, “Dynamic simulations of tissue welding,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 234–242 (1996).

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program latis,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 262–272 (1995).
[CrossRef]

Maitland, D. J.

M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).

D. J. Maitland, D. C. Eder, R. A. London, M. E. Glinsky, B. A. Soltz, “Dynamic simulations of tissue welding,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 234–242 (1996).

More, R. M.

R. M. More, K. H. Warren, D. A. Young, G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059–3078 (1988).
[CrossRef]

Motamedi, M.

B.-M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, M. Motamedi, “Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue,” IEEE J. Selec. Top. Quantum Electron. 4, 922–933 (1996).

Muller, G.

G. Muller, A. Roggan, Laser-Induced Interstitial Thermotherapy (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1995).

Neev, J.

R. A. London, D. S. Bailey, D. A. Young, W. E. Alley, M. D. Feit, A. M. Rubenchik, J. Neev, “Computational modeling of ultra-short-pulse ablation of enamel,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 233–244 (1996).
[CrossRef]

Orr, C.-S.

C.-S. Orr, R. C. Eberhart, “Overview of bioheat transfer,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 367–384.
[CrossRef]

Pearce, J.

J. Pearce, S. Thomsen, “Rate process analysis of thermal damage,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 561–608.
[CrossRef]

Prahl, S. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Rastegar, S.

B.-M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, M. Motamedi, “Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue,” IEEE J. Selec. Top. Quantum Electron. 4, 922–933 (1996).

T. N. Glenn, S. Rastegar, S. L. Jacques, F. Tittel, “Finite element analysis of temperature-controlled laser coagulation of biological tissue,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 383–390 (1994).

Roggan, A.

G. Muller, A. Roggan, Laser-Induced Interstitial Thermotherapy (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1995).

Rubenchik, A. M.

R. A. London, D. S. Bailey, D. A. Young, W. E. Alley, M. D. Feit, A. M. Rubenchik, J. Neev, “Computational modeling of ultra-short-pulse ablation of enamel,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 233–244 (1996).
[CrossRef]

Shenfeld, O.

B. Lobel, O. Eyal, E. Belotserkovsky, O. Shenfeld, N. Kariv, B. Goldwasser, A. Katzir, “In vivo CO2 laser rat urinary bladder welding with silver halide fiber optic radiometric temperature control,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 517–522 (1995).

Soltz, B. A.

D. J. Maitland, D. C. Eder, R. A. London, M. E. Glinsky, B. A. Soltz, “Dynamic simulations of tissue welding,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 234–242 (1996).

Strauss, M.

M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).

Thomsen, S.

B.-M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, M. Motamedi, “Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue,” IEEE J. Selec. Top. Quantum Electron. 4, 922–933 (1996).

J. Pearce, S. Thomsen, “Rate process analysis of thermal damage,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 561–608.
[CrossRef]

Thomsen, S. L.

I. Cilesiz, E. K. Chan, A. J. Welch, S. L. Thomsen, “Controlled temperature tissue fusion: Ho:YAG laser welding of rat intestine in vivo,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 523–534 (1995).

Tittel, F.

T. N. Glenn, S. Rastegar, S. L. Jacques, F. Tittel, “Finite element analysis of temperature-controlled laser coagulation of biological tissue,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 383–390 (1994).

Valvano, J. W.

J. W. Valvano, “Tissue thermal properties and perfusion,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 445–488.
[CrossRef]

Van Gemert, M. J. C.

A. J. Welch, M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

Warren, K. H.

R. M. More, K. H. Warren, D. A. Young, G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059–3078 (1988).
[CrossRef]

Welch, A. J.

I. Cilesiz, E. K. Chan, A. J. Welch, S. L. Thomsen, “Controlled temperature tissue fusion: Ho:YAG laser welding of rat intestine in vivo,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 523–534 (1995).

A. J. Welch, M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

Young, D. A.

D. A. Young, E. M. Corey, “A new global equation of state for hot, dense matter,” J. Appl. Phys. 78, 3748–3755 (1995).
[CrossRef]

R. M. More, K. H. Warren, D. A. Young, G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059–3078 (1988).
[CrossRef]

R. A. London, D. S. Bailey, D. A. Young, W. E. Alley, M. D. Feit, A. M. Rubenchik, J. Neev, “Computational modeling of ultra-short-pulse ablation of enamel,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 233–244 (1996).
[CrossRef]

M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).

Zimmerman, G. B.

R. M. More, K. H. Warren, D. A. Young, G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059–3078 (1988).
[CrossRef]

G. B. Zimmerman, W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Commun. Plasma Phys. Controlled Fusion 11, 51–61 (1975).

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Computer modeling of endovascular patch welding using temperature feedback,” in Medical Applications of Lasers III, F. Laffitte, ed., Proc. SPIE2623, 349–358 (1996).
[CrossRef]

R. A. London, M. E. Glinsky, G. B. Zimmerman, D. C. Eder, S. L. Jacques, “Coupled light transport–heat diffusion model for laser dosimetry with dynamic optical properties,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 434–442 (1995).
[CrossRef]

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program latis,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 262–272 (1995).
[CrossRef]

Astrophys. J. (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Commun. Plasma Phys. Controlled Fusion (1)

G. B. Zimmerman, W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Commun. Plasma Phys. Controlled Fusion 11, 51–61 (1975).

Comput. Phys. (1)

P. F. DuBois, “Making applications programmable,” Comput. Phys. 8, 70–74 (1994).
[CrossRef]

IEEE J. Selec. Top. Quantum Electron. (1)

B.-M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, M. Motamedi, “Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue,” IEEE J. Selec. Top. Quantum Electron. 4, 922–933 (1996).

J. Appl. Phys. (1)

D. A. Young, E. M. Corey, “A new global equation of state for hot, dense matter,” J. Appl. Phys. 78, 3748–3755 (1995).
[CrossRef]

Lasers Life Sci. (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).

Phys. Fluids (1)

R. M. More, K. H. Warren, D. A. Young, G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059–3078 (1988).
[CrossRef]

Other (18)

W. E. Alley, “A Maxwell equation solver for the simulation of moderately intense ultra-short pulse laser experiments,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1992), pp. 160–165.

Y. I. Cho, ed., “Bioengineering heat transfer,” in Advances in Heat Transfer (Academic, San Diego, Calif., 1992), Vol. 22.

C.-S. Orr, R. C. Eberhart, “Overview of bioheat transfer,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 367–384.
[CrossRef]

A. J. Welch, M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

L. Haar, J. S. Gallagher, G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).

J. Pearce, S. Thomsen, “Rate process analysis of thermal damage,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 561–608.
[CrossRef]

R. A. London, M. E. Glinsky, G. B. Zimmerman, D. C. Eder, S. L. Jacques, “Coupled light transport–heat diffusion model for laser dosimetry with dynamic optical properties,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 434–442 (1995).
[CrossRef]

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program latis,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 262–272 (1995).
[CrossRef]

M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Computer modeling of endovascular patch welding using temperature feedback,” in Medical Applications of Lasers III, F. Laffitte, ed., Proc. SPIE2623, 349–358 (1996).
[CrossRef]

D. J. Maitland, D. C. Eder, R. A. London, M. E. Glinsky, B. A. Soltz, “Dynamic simulations of tissue welding,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 234–242 (1996).

R. A. London, D. S. Bailey, D. A. Young, W. E. Alley, M. D. Feit, A. M. Rubenchik, J. Neev, “Computational modeling of ultra-short-pulse ablation of enamel,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 233–244 (1996).
[CrossRef]

M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).

G. Muller, A. Roggan, Laser-Induced Interstitial Thermotherapy (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1995).

S. L. Jacques, M. O. Gaeeni, “Thermally induced changes in optical properties of heart,” in Proceedings of the 11th International Conference of the IEEE Engineering in Medicine and Biology (IEEE, New York, 1989), pp. 1199–1200.

J. W. Valvano, “Tissue thermal properties and perfusion,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 445–488.
[CrossRef]

T. N. Glenn, S. Rastegar, S. L. Jacques, F. Tittel, “Finite element analysis of temperature-controlled laser coagulation of biological tissue,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 383–390 (1994).

B. Lobel, O. Eyal, E. Belotserkovsky, O. Shenfeld, N. Kariv, B. Goldwasser, A. Katzir, “In vivo CO2 laser rat urinary bladder welding with silver halide fiber optic radiometric temperature control,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 517–522 (1995).

I. Cilesiz, E. K. Chan, A. J. Welch, S. L. Thomsen, “Controlled temperature tissue fusion: Ho:YAG laser welding of rat intestine in vivo,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 523–534 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

latis used in an iterative method along with experiments to design a laser-medicine system. The cycle eventually converges on optimized design parameters.

Fig. 2
Fig. 2

latis models laser–tissue interactions considering four areas of coupled physical processes. Features such as the hydro response are being developed for future use in tissue ablation applications.

Fig. 3
Fig. 3

Laser–tissue interaction modeled in cylindrical geometry, with fine zones near the laser spot and coarse zones far from the laser spot.

Fig. 4
Fig. 4

Temperature controlled to a desired range by turning the laser power on and off as illustrated by the temperature and laser energy histories for the standard case.

Fig. 5
Fig. 5

(a) Total absorbed energy density integrated over the 60-s pulse. Laser and tissue conditions are for the standard case. This pattern reflects the light distribution. (b) The resultant temperature distribution at 60 s shows the conductive spreading relative to the absorbed energy. (c) Damage region (Ω = 1) is shown at various times during the pulse. It grows because of both heat diffusion and time for accumulation of damage.

Fig. 6
Fig. 6

Size of the damage regions reduced by dynamic optics, as shown for the standard case and for a case with a large spot. The effect of dynamic optics is greater for the standard spot than for the large spot. All curves are for the end of the pulse (at 60 s).

Tables (1)

Tables Icon

Table 1 Parameter Variations and Corresponding Damage Ratios

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ω=kdt,
k=kbTh expΔSR-ΔHRT.
P=P0fTexp-Ω,
DzΩ=1dynamiczΩ=1static.

Metrics