Abstract

Reconstruction methods for optical tomographic imaging require the development of models of light transport in highly scattering materials. While the simulation of the full temporal response function arising from a short source light pulse is computationally expensive, there are methods to evaluate efficiently certain transforms of the temporal profile. We previously presented methods to obtain directly the Mellin Transform, which is related to the moments of the temporal intensity distribution; We introduce a similar method to calculate directly the Laplace transform. This method provides an addtional, largely independent measurement type that can be combined with the moments to improve image quality in optical tomography, in particular with respect to the simultaneous reconstruction of absorption and scattering distribution.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time of flight imaging system,” Med. Phys. 17, 351–356 (1990).
    [CrossRef] [PubMed]
  2. A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).
    [CrossRef] [PubMed]
  3. J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).
  4. M. Tamura, “Multichannel near-infrared optical imaging of human brain activity,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 8–10.
  5. R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).
    [CrossRef]
  6. H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using dc data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
    [CrossRef] [PubMed]
  7. H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1995).
    [CrossRef]
  8. K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 35, 3447–3458 (1996).
    [CrossRef] [PubMed]
  9. M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.
  10. A. J. Joblin, “Method of calculating the image resolution of a near infrared time-of-flight tissue-imaging system,” Appl. Opt. 35, 752–757 (1996).
    [CrossRef] [PubMed]
  11. M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
    [CrossRef]
  12. S. R. Arridge, M. Schweiger, “Reconstruction in optical tomography using MRI-based prior knowledge,” in Information Processing in Medical Imaging ’95, Y. Bizais, C. Barillot, R. di Paola, eds., (Springer-Verlag, Berlin, 1995), pp. 77–88.
  13. M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Lecture Notes in Computer Science, Vol. 1230, J. Duncan, G. Gindi, eds. (Springer-Verlag, Berlin, 1997), pp. 71–84.
    [CrossRef]
  14. S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).
    [CrossRef] [PubMed]
  15. S. R. Arridge, M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scattering tomography (toast),” in Mathematical Methods in Medical Imaging II, J. N. Wilson, D. C. Wilson, eds., Proc. SPIE2035, 218–229 (1993).
    [CrossRef]
  16. B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
    [CrossRef] [PubMed]
  17. J. L. Karagiannes, Z. Zhang, B. Grossweiner, L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Opt. 28, 2311–2317 (1989).
    [CrossRef] [PubMed]
  18. M. Keijzer, W. M. Star, P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988).
    [CrossRef] [PubMed]
  19. J. C. Haselgrove, J. C. Schotland, J. S. Leigh, “Long-time behavior of photon diffusion in an absorbing medium: application to time-resolved spectroscopy,” Appl. Opt. 31, 2678–2683 (1992).
    [CrossRef] [PubMed]
  20. D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [CrossRef] [PubMed]
  21. J. C. Hebden, R. A. Kruger, K. S. Wong, “Time-resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
    [CrossRef] [PubMed]
  22. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  23. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
    [CrossRef] [PubMed]
  24. S. R. Arridge, “Photon measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  25. S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]
  26. S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infra-red absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
    [CrossRef]
  27. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near-infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
    [CrossRef]
  28. S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
    [CrossRef] [PubMed]
  29. toast reconstruction package available at http://www.medphys.ucl.ac.uk/toast/index.htm .

1996 (3)

1995 (6)

1994 (1)

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

1993 (3)

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).
[CrossRef]

1992 (1)

1991 (1)

1990 (2)

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time of flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (3)

M. Keijzer, W. M. Star, P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, “Photon measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Reconstruction in optical tomography using MRI-based prior knowledge,” in Information Processing in Medical Imaging ’95, Y. Bizais, C. Barillot, R. di Paola, eds., (Springer-Verlag, Berlin, 1995), pp. 77–88.

S. R. Arridge, M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scattering tomography (toast),” in Mathematical Methods in Medical Imaging II, J. N. Wilson, D. C. Wilson, eds., Proc. SPIE2035, 218–229 (1993).
[CrossRef]

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Lecture Notes in Computer Science, Vol. 1230, J. Duncan, G. Gindi, eds. (Springer-Verlag, Berlin, 1997), pp. 71–84.
[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infra-red absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near-infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
[CrossRef]

Cope, M.

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

de Blasi, R. A.

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).
[CrossRef]

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infra-red absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near-infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
[CrossRef]

Edwards, A. D.

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).
[CrossRef] [PubMed]

Elwell, C. E.

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).
[CrossRef]

Ferrari, M.

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).
[CrossRef]

Grossweiner, B.

Grossweiner, L. I.

Haselgrove, J. C.

Hebden, J. C.

J. C. Hebden, R. A. Kruger, K. S. Wong, “Time-resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time of flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near-infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
[CrossRef]

Jiang, H.

Joblin, A. J.

Karagiannes, J. L.

Keijzer, M.

Kruger, R. A.

J. C. Hebden, R. A. Kruger, K. S. Wong, “Time-resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time of flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

Leigh, J. S.

Osterberg, U. L.

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using dc data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1995).
[CrossRef]

Patterson, M. S.

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.

Paulsen, K. D.

Pogue, B. W.

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.

Reynolds, E. O. R.

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).
[CrossRef] [PubMed]

Richardson, C. E.

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).
[CrossRef] [PubMed]

Safoue, F.

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).
[CrossRef]

Schotland, J. C.

Schweiger, M.

S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Schweiger, “Reconstruction in optical tomography using MRI-based prior knowledge,” in Information Processing in Medical Imaging ’95, Y. Bizais, C. Barillot, R. di Paola, eds., (Springer-Verlag, Berlin, 1995), pp. 77–88.

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Lecture Notes in Computer Science, Vol. 1230, J. Duncan, G. Gindi, eds. (Springer-Verlag, Berlin, 1997), pp. 71–84.
[CrossRef]

S. R. Arridge, M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scattering tomography (toast),” in Mathematical Methods in Medical Imaging II, J. N. Wilson, D. C. Wilson, eds., Proc. SPIE2035, 218–229 (1993).
[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infra-red absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near-infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
[CrossRef]

Star, W. M.

Storchi, P. R. M.

Tamura, M.

M. Tamura, “Multichannel near-infrared optical imaging of human brain activity,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 8–10.

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wilson, B. C.

M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.

Wong, K. S.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wray, S. C.

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J. S.

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).
[CrossRef] [PubMed]

Zhang, Z.

Appl. Opt. (9)

K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 35, 3447–3458 (1996).
[CrossRef] [PubMed]

A. J. Joblin, “Method of calculating the image resolution of a near infrared time-of-flight tissue-imaging system,” Appl. Opt. 35, 752–757 (1996).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995).
[CrossRef] [PubMed]

J. L. Karagiannes, Z. Zhang, B. Grossweiner, L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Opt. 28, 2311–2317 (1989).
[CrossRef] [PubMed]

M. Keijzer, W. M. Star, P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988).
[CrossRef] [PubMed]

J. C. Haselgrove, J. C. Schotland, J. S. Leigh, “Long-time behavior of photon diffusion in an absorbing medium: application to time-resolved spectroscopy,” Appl. Opt. 31, 2678–2683 (1992).
[CrossRef] [PubMed]

S. R. Arridge, “Photon measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

J. C. Hebden, R. A. Kruger, K. S. Wong, “Time-resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
[CrossRef] [PubMed]

J. Appl. Physiol. (2)

R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).

J. Math. Imag. Vision (1)

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lancet (1)

A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988).
[CrossRef] [PubMed]

Med. Phys. (3)

J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time of flight imaging system,” Med. Phys. 17, 351–356 (1990).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[CrossRef] [PubMed]

Phys. Med. Biol. (4)

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using dc data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[CrossRef] [PubMed]

Other (8)

S. R. Arridge, M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scattering tomography (toast),” in Mathematical Methods in Medical Imaging II, J. N. Wilson, D. C. Wilson, eds., Proc. SPIE2035, 218–229 (1993).
[CrossRef]

S. R. Arridge, M. Schweiger, “Reconstruction in optical tomography using MRI-based prior knowledge,” in Information Processing in Medical Imaging ’95, Y. Bizais, C. Barillot, R. di Paola, eds., (Springer-Verlag, Berlin, 1995), pp. 77–88.

M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Lecture Notes in Computer Science, Vol. 1230, J. Duncan, G. Gindi, eds. (Springer-Verlag, Berlin, 1997), pp. 71–84.
[CrossRef]

M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.

M. Tamura, “Multichannel near-infrared optical imaging of human brain activity,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 8–10.

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infra-red absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near-infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993).
[CrossRef]

toast reconstruction package available at http://www.medphys.ucl.ac.uk/toast/index.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Effect of exponential filtering of TPSF, showing normalized exponentially weighted TPSF calculated for the measurement across a homogeneous circle with a radius of 25 mm, μa = 0.025 mm-1, and μs′ = 2.0 mm-1. s ranged between 0 and 0.005 ps-1 in steps of 0.001 ps-1.

Fig. 2
Fig. 2

Comparison of Laplace transforms on the boundary of a homogeneous circle obtained by the direct method and by explicit finite-difference time sampling. Values are plotted as function of angular source–detector spacing: (top) Unnormalized, (middle) normalized, (bottom) relative errors for both cases.

Fig. 3
Fig. 3

Absorption PMDF JαL¯s for s = 0.001 ps-1 (top), 0.01 ps-1 (middle), and 0.1 ps-1 (bottom). Object is homogeneous circle (radius 25 mm) with μa = 0.025 mm-1 and μs′ = 2 mm-1. Images are scaled individually.

Fig. 4
Fig. 4

Diffusion PMDF JνL¯s for the same values of s as in Fig. 3. Images are logarithmic and scaled individually.

Fig. 5
Fig. 5

(top) Normalized cross sections of images in Fig. 3 along the vertical radial. (bottom) FWHM as a function of s.

Fig. 6
Fig. 6

(top) Normalized cross sections of images in Fig. 4 for the scatter case. (bottom) FWHM as a function of s.

Fig. 7
Fig. 7

Simultaneous reconstruction of μa and μs′ of a test object with embedded absorbing and scattering inhomogeneities: (a) target, (b) reconstruction from 〈t〉 only, (c) reconstructions from 〈t〉 and 〈t2〉, and (d) reconstructions from 〈t〉 and L(s = 0.01); (left) μa, (right) μs′.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

1cΦr, tt-·κrΦr, t+μarΦr, t=q0r, t,
Γξ, t=-cκξnΦξ, t.
mΓt, k0tk-1Γtdt,
E=mΓ, 1,
tn=mΓ, n+1mΓ, 1,  n=1, 2,.
LΓt, s0exp-stΓtdt,
L¯Γ, sLΓ, s/E.
Kκ+CμaΦt+BΦt=Qt,
Φhr, t=i=1DΦituir.
LΦt, s=s·LΦ, s,
0exp-stK+C+sBΦtdt=0exp-stQtdt,
K+C+sBLΦt, s=LQt, s.
LΦt, s=K+C+sB-1Q0.
LΓt, s=-cκnLΦt, s.
Jp=Jijp=Mi/pj.
JαLsξj, ζi, s, r=k,l|Nk,NlτrLΦki, s×LΦAdj,lj, sukrulr,
JνLsξj, ζi, s, r=k,l|Nk,NlτrLΦki, s×LΦAdj,lj, sukr·ulr,
JαLs=Jij,αLsξl, ζk, s, τj=τjJαLsξl, ζk, s, rdr,
JνLs=Jij,νLsξl, ζk, s, τj=τjJνLsξl, ζk, s, rdr.
JαL¯s=JαLsE-JαELsE2=JαLsE-L¯sJαlog E,
JνL¯s=JνLsE-JνELsE2=JνLsE-L¯sJνlog E.

Metrics