Abstract

The collapse of laser-induced cavitation bubbles creates acoustic transients within the surrounding medium and also pressure impulses to the ablation target and light-delivery fiber during microsecond laser ablation. The impulses are investigated here with time-resolved flash photography, and they are found to occur whether or not the light-delivery fiber is in contact with the target. We demonstrate that the impulses depend primarily on the energy stored in the cavitation bubble. They are not directly dependent on the mode of light delivery (contact versus noncontact), and they are also not directly correlated to the other acoustic transients. The pressure impulses do seem to be associated with the bubble-driven jet formation caused by the bubble collapse.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vogel, W. Lauterborn, “Acoustic transient generation by laser–produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
    [CrossRef]
  2. K. Rink, G. Delacrétaz, R. P. Salathé, “Fragmentation process of current laser lithotriptors,” Lasers Surg. Med. 16, 134–146 (1995).
    [CrossRef] [PubMed]
  3. E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser–induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
    [CrossRef]
  4. T. G. van Leeuwen, E. D. Jansen, A. J. Welch, C. Borst, “Excimer laser induced bubble: dimensions, theory, and implications for laser angioplasty,” Lasers Surg. Med. 18, 381–390 (1996).
    [CrossRef] [PubMed]
  5. K. Gregory, “Laser thrombolysis,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadephia, Pa., 1994), pp. 892–902.
  6. F. Litvack, “Excimer laser coronary angioplasty,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadelphia, Pa., 1994), pp. 841–866.
  7. O. Topaz, “Holmium:YAG coronary angioplasty: the multicenter registry,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadelphia, Pa., 1994), pp. 867–891.
  8. H. Shangguan, L. W. Casperson, S. A. Prahl, “Microsecond laser ablation of thrombus and gelatin under clear liquids: contact versus non-contact,” IEEE J. Selec. Topics Quantum Electron. 2, 818–825 (1996).
    [CrossRef]
  9. T. Tomaru, H. J. Geschwind, G. Boussignac, F. Lange, S. J. Tahk, “Characteristics of shock waves induced by pulsed lasers and their effects on arterial tissue: comparison of excimer, pulse dye, and holmium YAG lasers,” Am. Heart J. 123, 896–904 (1992).
    [CrossRef] [PubMed]
  10. H. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt. 35, 3347–3357 (1996).
    [CrossRef] [PubMed]
  11. R. de la Torre, K. W. Gregory, “Cavitation bubbles and acoustic transients may produce dissections during laser angiogplasty,” J. Am. Coll. Cardiol. 19A, 48 (1992).
  12. T. G. van Leeuwen, L. van Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Original of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992).
    [CrossRef] [PubMed]
  13. T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, C. Brost, “Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit,” Circulation 87, 1258–1263 (1993).
    [CrossRef] [PubMed]
  14. P. A. Tipler, Physics for Scientists and Engineers, vol. 1, (Worth, New York, 1990), p. 210.
  15. Lord Rayleigh, “On the pressure developed during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).
    [CrossRef]
  16. A. Vogel, R. Engelhardt, U. Behnle, U. Parlitz, “Minimization of cavitation effects in pulsed laser ablation—illustrated on laser angioplasty,” Appl. Phys. B 62, 173–182 (1996).
    [CrossRef]
  17. T. B. Benjamin, B. B. Taib, A. T. Ellis, “The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221–240 (1966).
    [CrossRef]
  18. J. R. Blake, B. B. Taib, G. Doherty, “Transient cavities near boundaries. part 1: rigid boundary,” J. Fluid Mech. 170, 479–497 (1986).
    [CrossRef]
  19. E. J. Chapyak, R. P. Godwin, S. A. Prahl, H. Shangguan, “A comparison of numerical simulations and laboratory studies of laser thrombolysis,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VII, R. R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. J. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenbach, P. L. Tate, G. M. Watson, eds., Proc. SPIE2970, 23–34 (1997).
  20. A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers,” Ophthalmology 93, 1259–1269 (1986).
    [CrossRef] [PubMed]
  21. A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2259 (1990).
    [CrossRef]
  22. A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
    [CrossRef] [PubMed]

1996 (5)

A. Vogel, R. Engelhardt, U. Behnle, U. Parlitz, “Minimization of cavitation effects in pulsed laser ablation—illustrated on laser angioplasty,” Appl. Phys. B 62, 173–182 (1996).
[CrossRef]

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser–induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, C. Borst, “Excimer laser induced bubble: dimensions, theory, and implications for laser angioplasty,” Lasers Surg. Med. 18, 381–390 (1996).
[CrossRef] [PubMed]

H. Shangguan, L. W. Casperson, S. A. Prahl, “Microsecond laser ablation of thrombus and gelatin under clear liquids: contact versus non-contact,” IEEE J. Selec. Topics Quantum Electron. 2, 818–825 (1996).
[CrossRef]

H. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt. 35, 3347–3357 (1996).
[CrossRef] [PubMed]

1995 (1)

K. Rink, G. Delacrétaz, R. P. Salathé, “Fragmentation process of current laser lithotriptors,” Lasers Surg. Med. 16, 134–146 (1995).
[CrossRef] [PubMed]

1994 (1)

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

1993 (1)

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, C. Brost, “Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit,” Circulation 87, 1258–1263 (1993).
[CrossRef] [PubMed]

1992 (3)

R. de la Torre, K. W. Gregory, “Cavitation bubbles and acoustic transients may produce dissections during laser angiogplasty,” J. Am. Coll. Cardiol. 19A, 48 (1992).

T. G. van Leeuwen, L. van Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Original of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992).
[CrossRef] [PubMed]

T. Tomaru, H. J. Geschwind, G. Boussignac, F. Lange, S. J. Tahk, “Characteristics of shock waves induced by pulsed lasers and their effects on arterial tissue: comparison of excimer, pulse dye, and holmium YAG lasers,” Am. Heart J. 123, 896–904 (1992).
[CrossRef] [PubMed]

1990 (1)

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2259 (1990).
[CrossRef]

1988 (1)

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser–produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

1986 (2)

J. R. Blake, B. B. Taib, G. Doherty, “Transient cavities near boundaries. part 1: rigid boundary,” J. Fluid Mech. 170, 479–497 (1986).
[CrossRef]

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers,” Ophthalmology 93, 1259–1269 (1986).
[CrossRef] [PubMed]

1966 (1)

T. B. Benjamin, B. B. Taib, A. T. Ellis, “The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221–240 (1966).
[CrossRef]

1917 (1)

Lord Rayleigh, “On the pressure developed during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).
[CrossRef]

Asiyo, M. N.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2259 (1990).
[CrossRef]

Asshauer, T.

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser–induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

Behnle, U.

A. Vogel, R. Engelhardt, U. Behnle, U. Parlitz, “Minimization of cavitation effects in pulsed laser ablation—illustrated on laser angioplasty,” Appl. Phys. B 62, 173–182 (1996).
[CrossRef]

Benjamin, T. B.

T. B. Benjamin, B. B. Taib, A. T. Ellis, “The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221–240 (1966).
[CrossRef]

Birngruber, R.

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2259 (1990).
[CrossRef]

Blake, J. R.

J. R. Blake, B. B. Taib, G. Doherty, “Transient cavities near boundaries. part 1: rigid boundary,” J. Fluid Mech. 170, 479–497 (1986).
[CrossRef]

Borst, C.

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, C. Borst, “Excimer laser induced bubble: dimensions, theory, and implications for laser angioplasty,” Lasers Surg. Med. 18, 381–390 (1996).
[CrossRef] [PubMed]

T. G. van Leeuwen, L. van Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Original of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992).
[CrossRef] [PubMed]

Boussignac, G.

T. Tomaru, H. J. Geschwind, G. Boussignac, F. Lange, S. J. Tahk, “Characteristics of shock waves induced by pulsed lasers and their effects on arterial tissue: comparison of excimer, pulse dye, and holmium YAG lasers,” Am. Heart J. 123, 896–904 (1992).
[CrossRef] [PubMed]

Brost, C.

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, C. Brost, “Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit,” Circulation 87, 1258–1263 (1993).
[CrossRef] [PubMed]

Busch, S.

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

Casperson, L. W.

H. Shangguan, L. W. Casperson, S. A. Prahl, “Microsecond laser ablation of thrombus and gelatin under clear liquids: contact versus non-contact,” IEEE J. Selec. Topics Quantum Electron. 2, 818–825 (1996).
[CrossRef]

H. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt. 35, 3347–3357 (1996).
[CrossRef] [PubMed]

Chapyak, E. J.

E. J. Chapyak, R. P. Godwin, S. A. Prahl, H. Shangguan, “A comparison of numerical simulations and laboratory studies of laser thrombolysis,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VII, R. R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. J. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenbach, P. L. Tate, G. M. Watson, eds., Proc. SPIE2970, 23–34 (1997).

de la Torre, R.

R. de la Torre, K. W. Gregory, “Cavitation bubbles and acoustic transients may produce dissections during laser angiogplasty,” J. Am. Coll. Cardiol. 19A, 48 (1992).

Delacrétaz, G.

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser–induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

K. Rink, G. Delacrétaz, R. P. Salathé, “Fragmentation process of current laser lithotriptors,” Lasers Surg. Med. 16, 134–146 (1995).
[CrossRef] [PubMed]

Doherty, G.

J. R. Blake, B. B. Taib, G. Doherty, “Transient cavities near boundaries. part 1: rigid boundary,” J. Fluid Mech. 170, 479–497 (1986).
[CrossRef]

Ellis, A. T.

T. B. Benjamin, B. B. Taib, A. T. Ellis, “The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221–240 (1966).
[CrossRef]

Engelhardt, R.

A. Vogel, R. Engelhardt, U. Behnle, U. Parlitz, “Minimization of cavitation effects in pulsed laser ablation—illustrated on laser angioplasty,” Appl. Phys. B 62, 173–182 (1996).
[CrossRef]

Frenz, M.

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser–induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

Frieser, A.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2259 (1990).
[CrossRef]

Geschwind, H. J.

T. Tomaru, H. J. Geschwind, G. Boussignac, F. Lange, S. J. Tahk, “Characteristics of shock waves induced by pulsed lasers and their effects on arterial tissue: comparison of excimer, pulse dye, and holmium YAG lasers,” Am. Heart J. 123, 896–904 (1992).
[CrossRef] [PubMed]

Godwin, R. P.

E. J. Chapyak, R. P. Godwin, S. A. Prahl, H. Shangguan, “A comparison of numerical simulations and laboratory studies of laser thrombolysis,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VII, R. R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. J. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenbach, P. L. Tate, G. M. Watson, eds., Proc. SPIE2970, 23–34 (1997).

Gregory, K.

K. Gregory, “Laser thrombolysis,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadephia, Pa., 1994), pp. 892–902.

Gregory, K. W.

H. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt. 35, 3347–3357 (1996).
[CrossRef] [PubMed]

R. de la Torre, K. W. Gregory, “Cavitation bubbles and acoustic transients may produce dissections during laser angiogplasty,” J. Am. Coll. Cardiol. 19A, 48 (1992).

Hentschel, W.

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers,” Ophthalmology 93, 1259–1269 (1986).
[CrossRef] [PubMed]

Holzfuss, J.

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers,” Ophthalmology 93, 1259–1269 (1986).
[CrossRef] [PubMed]

Jansen, E. D.

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser–induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, C. Borst, “Excimer laser induced bubble: dimensions, theory, and implications for laser angioplasty,” Lasers Surg. Med. 18, 381–390 (1996).
[CrossRef] [PubMed]

Jungnickel, K.

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

Lange, F.

T. Tomaru, H. J. Geschwind, G. Boussignac, F. Lange, S. J. Tahk, “Characteristics of shock waves induced by pulsed lasers and their effects on arterial tissue: comparison of excimer, pulse dye, and holmium YAG lasers,” Am. Heart J. 123, 896–904 (1992).
[CrossRef] [PubMed]

Lauterborn, W.

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser–produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers,” Ophthalmology 93, 1259–1269 (1986).
[CrossRef] [PubMed]

Litvack, F.

F. Litvack, “Excimer laser coronary angioplasty,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadelphia, Pa., 1994), pp. 841–866.

Meertens, J. H.

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, C. Brost, “Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit,” Circulation 87, 1258–1263 (1993).
[CrossRef] [PubMed]

T. G. van Leeuwen, L. van Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Original of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992).
[CrossRef] [PubMed]

Motamedi, M.

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser–induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

T. G. van Leeuwen, L. van Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Original of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992).
[CrossRef] [PubMed]

Parlitz, U.

A. Vogel, R. Engelhardt, U. Behnle, U. Parlitz, “Minimization of cavitation effects in pulsed laser ablation—illustrated on laser angioplasty,” Appl. Phys. B 62, 173–182 (1996).
[CrossRef]

Post, M. J.

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, C. Brost, “Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit,” Circulation 87, 1258–1263 (1993).
[CrossRef] [PubMed]

T. G. van Leeuwen, L. van Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Original of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992).
[CrossRef] [PubMed]

Prahl, S. A.

H. Shangguan, L. W. Casperson, S. A. Prahl, “Microsecond laser ablation of thrombus and gelatin under clear liquids: contact versus non-contact,” IEEE J. Selec. Topics Quantum Electron. 2, 818–825 (1996).
[CrossRef]

H. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt. 35, 3347–3357 (1996).
[CrossRef] [PubMed]

E. J. Chapyak, R. P. Godwin, S. A. Prahl, H. Shangguan, “A comparison of numerical simulations and laboratory studies of laser thrombolysis,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VII, R. R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. J. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenbach, P. L. Tate, G. M. Watson, eds., Proc. SPIE2970, 23–34 (1997).

Rayleigh, Lord

Lord Rayleigh, “On the pressure developed during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).
[CrossRef]

Rink, K.

K. Rink, G. Delacrétaz, R. P. Salathé, “Fragmentation process of current laser lithotriptors,” Lasers Surg. Med. 16, 134–146 (1995).
[CrossRef] [PubMed]

Salathé, R. P.

K. Rink, G. Delacrétaz, R. P. Salathé, “Fragmentation process of current laser lithotriptors,” Lasers Surg. Med. 16, 134–146 (1995).
[CrossRef] [PubMed]

Schweiger, P.

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2259 (1990).
[CrossRef]

Shangguan, H.

H. Shangguan, L. W. Casperson, S. A. Prahl, “Microsecond laser ablation of thrombus and gelatin under clear liquids: contact versus non-contact,” IEEE J. Selec. Topics Quantum Electron. 2, 818–825 (1996).
[CrossRef]

H. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt. 35, 3347–3357 (1996).
[CrossRef] [PubMed]

E. J. Chapyak, R. P. Godwin, S. A. Prahl, H. Shangguan, “A comparison of numerical simulations and laboratory studies of laser thrombolysis,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VII, R. R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. J. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenbach, P. L. Tate, G. M. Watson, eds., Proc. SPIE2970, 23–34 (1997).

Shearin, A.

Tahk, S. J.

T. Tomaru, H. J. Geschwind, G. Boussignac, F. Lange, S. J. Tahk, “Characteristics of shock waves induced by pulsed lasers and their effects on arterial tissue: comparison of excimer, pulse dye, and holmium YAG lasers,” Am. Heart J. 123, 896–904 (1992).
[CrossRef] [PubMed]

Taib, B. B.

J. R. Blake, B. B. Taib, G. Doherty, “Transient cavities near boundaries. part 1: rigid boundary,” J. Fluid Mech. 170, 479–497 (1986).
[CrossRef]

T. B. Benjamin, B. B. Taib, A. T. Ellis, “The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221–240 (1966).
[CrossRef]

Tipler, P. A.

P. A. Tipler, Physics for Scientists and Engineers, vol. 1, (Worth, New York, 1990), p. 210.

Tomaru, T.

T. Tomaru, H. J. Geschwind, G. Boussignac, F. Lange, S. J. Tahk, “Characteristics of shock waves induced by pulsed lasers and their effects on arterial tissue: comparison of excimer, pulse dye, and holmium YAG lasers,” Am. Heart J. 123, 896–904 (1992).
[CrossRef] [PubMed]

Topaz, O.

O. Topaz, “Holmium:YAG coronary angioplasty: the multicenter registry,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadelphia, Pa., 1994), pp. 867–891.

van Erven, L.

T. G. van Leeuwen, L. van Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Original of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992).
[CrossRef] [PubMed]

van Leeuwen, T. G.

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, C. Borst, “Excimer laser induced bubble: dimensions, theory, and implications for laser angioplasty,” Lasers Surg. Med. 18, 381–390 (1996).
[CrossRef] [PubMed]

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, C. Brost, “Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit,” Circulation 87, 1258–1263 (1993).
[CrossRef] [PubMed]

T. G. van Leeuwen, L. van Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Original of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992).
[CrossRef] [PubMed]

Velema, E.

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, C. Brost, “Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit,” Circulation 87, 1258–1263 (1993).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, R. Engelhardt, U. Behnle, U. Parlitz, “Minimization of cavitation effects in pulsed laser ablation—illustrated on laser angioplasty,” Appl. Phys. B 62, 173–182 (1996).
[CrossRef]

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2259 (1990).
[CrossRef]

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser–produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers,” Ophthalmology 93, 1259–1269 (1986).
[CrossRef] [PubMed]

Welch, A. J.

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser–induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, C. Borst, “Excimer laser induced bubble: dimensions, theory, and implications for laser angioplasty,” Lasers Surg. Med. 18, 381–390 (1996).
[CrossRef] [PubMed]

Am. Heart J. (1)

T. Tomaru, H. J. Geschwind, G. Boussignac, F. Lange, S. J. Tahk, “Characteristics of shock waves induced by pulsed lasers and their effects on arterial tissue: comparison of excimer, pulse dye, and holmium YAG lasers,” Am. Heart J. 123, 896–904 (1992).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Vogel, R. Engelhardt, U. Behnle, U. Parlitz, “Minimization of cavitation effects in pulsed laser ablation—illustrated on laser angioplasty,” Appl. Phys. B 62, 173–182 (1996).
[CrossRef]

Circulation (1)

T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, C. Brost, “Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit,” Circulation 87, 1258–1263 (1993).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2259 (1990).
[CrossRef]

IEEE J. Selec. Topics Quantum Electron. (1)

H. Shangguan, L. W. Casperson, S. A. Prahl, “Microsecond laser ablation of thrombus and gelatin under clear liquids: contact versus non-contact,” IEEE J. Selec. Topics Quantum Electron. 2, 818–825 (1996).
[CrossRef]

J. Acoust. Soc. Am. (1)

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser–produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

J. Am. Coll. Cardiol. (2)

R. de la Torre, K. W. Gregory, “Cavitation bubbles and acoustic transients may produce dissections during laser angiogplasty,” J. Am. Coll. Cardiol. 19A, 48 (1992).

T. G. van Leeuwen, L. van Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Original of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992).
[CrossRef] [PubMed]

J. Fluid Mech. (1)

J. R. Blake, B. B. Taib, G. Doherty, “Transient cavities near boundaries. part 1: rigid boundary,” J. Fluid Mech. 170, 479–497 (1986).
[CrossRef]

Lasers Surg. Med. (4)

A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994).
[CrossRef] [PubMed]

K. Rink, G. Delacrétaz, R. P. Salathé, “Fragmentation process of current laser lithotriptors,” Lasers Surg. Med. 16, 134–146 (1995).
[CrossRef] [PubMed]

E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser–induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996).
[CrossRef]

T. G. van Leeuwen, E. D. Jansen, A. J. Welch, C. Borst, “Excimer laser induced bubble: dimensions, theory, and implications for laser angioplasty,” Lasers Surg. Med. 18, 381–390 (1996).
[CrossRef] [PubMed]

Ophthalmology (1)

A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers,” Ophthalmology 93, 1259–1269 (1986).
[CrossRef] [PubMed]

Philos. Mag. (1)

Lord Rayleigh, “On the pressure developed during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A (1)

T. B. Benjamin, B. B. Taib, A. T. Ellis, “The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221–240 (1966).
[CrossRef]

Other (5)

E. J. Chapyak, R. P. Godwin, S. A. Prahl, H. Shangguan, “A comparison of numerical simulations and laboratory studies of laser thrombolysis,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VII, R. R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. J. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenbach, P. L. Tate, G. M. Watson, eds., Proc. SPIE2970, 23–34 (1997).

K. Gregory, “Laser thrombolysis,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadephia, Pa., 1994), pp. 892–902.

F. Litvack, “Excimer laser coronary angioplasty,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadelphia, Pa., 1994), pp. 841–866.

O. Topaz, “Holmium:YAG coronary angioplasty: the multicenter registry,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadelphia, Pa., 1994), pp. 867–891.

P. A. Tipler, Physics for Scientists and Engineers, vol. 1, (Worth, New York, 1990), p. 210.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of two ablation configurations (contact and noncontact delivery) for cuvette experiments.

Fig. 2
Fig. 2

Experimental setup for time-resolved flash photography of the effects of pressure impulses on ablation targets during microsecond laser ablation.

Fig. 3
Fig. 3

Schematic illustration of two ablation configurations for tube experiments (noncontact) (a) vertically submerged in a 1-cm cuvette filled with water and (b) loosely laid on the metal plate.

Fig. 4
Fig. 4

Bubble formation on gelatin when the optical fiber is in contact with the gelatin surface. The optical fiber is centered in a 1-cm cuvette. A single pulse of 20-mJ laser energy was delivered through a flushing catheter with a 300-µm-diameter fiber. The colored layer was 300 µm thick but appears thicker because of a slight curvature of the surface.

Fig. 5
Fig. 5

Bubble formation on gelatin when the optical fiber is 2 mm above the gelatin surface. The optical fiber is centered in a 1-cm cuvette. A single 60-mJ laser pulse was delivered through a flushing catheter with a 300-µm-diameter fiber. The colored layer was 300 µm thick.

Fig. 6
Fig. 6

Pressure impulse as a function of radiant exposure. Open circles represent the noncontact delivery, and solid circles represent the contact data. The flushing catheter with a 200–400-µm fiber was used for the light delivery. The spot sizes are labeled. Error bars represent the standard deviation of five measurements.

Fig. 7
Fig. 7

Cavitation bubble energy as a function of the laser-pulse energy. Open circles represent the noncontact delivery, and solid circles represent the contact data. The flushing catheter with a 300-µm fiber was used for the light delivery. Error bars represent the standard deviation of five measurements.

Fig. 8
Fig. 8

Pressure impulse as a function of bubble energy. Open circles represent the noncontact delivery, and solid circles represent the contact data. The flushing catheter with a 300-µm fiber was used for the light delivery. The arrow indicates two overlapped data points. Error bars represent the standard deviation of five measurements.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I=titfFdt,
I=titfFdt=titfdPdtdt=Pf-Pi=mvf-mvi,
mghmax=12mvf2,
I=mvf=m2ghmax.
Ipressure=m2ghmax/S.
EB=43πRmax3Δp,

Metrics