Abstract

The output emittance at the edge of a luminescent concentrator (LC) depends on the physical properties of the dye and matrix used, the spectral intensity of the incident light, and the geometric parameters of the LC. If a projection of the light source on a LC is smaller than its aperture, the LC’s output signal will also depend on the position of the projection. This LC feature opens the possibility of determining the position of the light spot and thus building a new type of position-sensitive device. The advantage of LC position-sensitive devices compared with CCD-based sensors is their greater simplicity; LC detection devices have larger linear range than conventional position-sensitive sensors based on discrete photodetectors. Here we describe our study of LC’s as two-dimensional position-sensitive elements and analyze, by ray-tracing simulation, different LC designs to get improved linear response. In addition, we discuss experimental results showing real characteristics of position-sensitive devices based on the integration of LC’s with photodetectors. We found that spatial resolution of a 12-mm-radius LC-based sensor is of the order of 13 µm within the linear range ±5 mm.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber, J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299–2300 (1976).
    [CrossRef] [PubMed]
  2. A. Goetzberger, W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977).
    [CrossRef]
  3. J. S. Batchelder, A. H. Zewail, T. Cole, “Luminescent solar concentrators. 1. Theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090–3110 (1979).
    [CrossRef] [PubMed]
  4. J. Roncali, F. Garnier, “Photon transport properties of luminescent solar concentrators: analysis and optimization,” Appl. Opt. 23, 2809–2817 (1984).
    [CrossRef]
  5. V. K. Baranov, “Luminescent concentrators as spectral elements,” Sov. J. Opt. Technol. 58, 472–474 (1991).
  6. S. A. Evenson, A. H. Rawicz, “Thin-film luminescent concentrators for integrated devices,” Appl. Opt. 34, 7231–7238 (1995).
    [CrossRef] [PubMed]
  7. S. A. Evenson, A. H. Rawicz, “Thin-film luminescent concentrators for integrated devices: a cookbook,” Appl. Opt. 34, 7302–7306 (1995).
    [CrossRef] [PubMed]
  8. E. Burstein, A. M. Weiss, “Two-dimensional optical position sensor,” in 9th Meeting on Optical Engineering in Israel, I. Shladov, ed., Proc. SPIE2426, 296–303 (1995).
    [CrossRef]
  9. A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1984).
  10. P. J. Jungwirth, “Photoluminescent Concentrator-Based Receptive Fields,” M. S. thesis (Simon Fraser University, Burnaby, British Columbia, Canada, 1996).
  11. I. Melnik, R. Hibst, M. Fischer, G. Flemming, “New modified optical fiber tips for medical applications,” Opt. Eng. 32, 227–232 (1993).
    [CrossRef]
  12. I. Melnik, I. Kravchenko, N. Denisov, S. Dets, T. Rusina, “Transmission of straight and curved multimode optical fibers,” in Medical and Fiber Optic Sensors and Delivery Systems, G. Orellana, A. V. Scheggi, H. I. Croitoru, M. Miyagi, H. J. Sterenborg, eds., Proc. SPIE2631, 226–233 (1995).
    [CrossRef]
  13. S. C. Stotlar, “Silicon photodiodes: choosing the right sensor for the right application,” in The Photonics Design and Application Handbook (Laurin Publication, Pittsfield, Mass., 1994), pp. 127–134.
  14. J. S. Batchelder, A. H. Zewail, T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733–3754 (1981).
    [CrossRef] [PubMed]

1995 (2)

1993 (1)

I. Melnik, R. Hibst, M. Fischer, G. Flemming, “New modified optical fiber tips for medical applications,” Opt. Eng. 32, 227–232 (1993).
[CrossRef]

1991 (1)

V. K. Baranov, “Luminescent concentrators as spectral elements,” Sov. J. Opt. Technol. 58, 472–474 (1991).

1984 (1)

1981 (1)

1979 (1)

1977 (1)

A. Goetzberger, W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977).
[CrossRef]

1976 (1)

Baranov, V. K.

V. K. Baranov, “Luminescent concentrators as spectral elements,” Sov. J. Opt. Technol. 58, 472–474 (1991).

Batchelder, J. S.

Burstein, E.

E. Burstein, A. M. Weiss, “Two-dimensional optical position sensor,” in 9th Meeting on Optical Engineering in Israel, I. Shladov, ed., Proc. SPIE2426, 296–303 (1995).
[CrossRef]

Cole, T.

Denisov, N.

I. Melnik, I. Kravchenko, N. Denisov, S. Dets, T. Rusina, “Transmission of straight and curved multimode optical fibers,” in Medical and Fiber Optic Sensors and Delivery Systems, G. Orellana, A. V. Scheggi, H. I. Croitoru, M. Miyagi, H. J. Sterenborg, eds., Proc. SPIE2631, 226–233 (1995).
[CrossRef]

Dets, S.

I. Melnik, I. Kravchenko, N. Denisov, S. Dets, T. Rusina, “Transmission of straight and curved multimode optical fibers,” in Medical and Fiber Optic Sensors and Delivery Systems, G. Orellana, A. V. Scheggi, H. I. Croitoru, M. Miyagi, H. J. Sterenborg, eds., Proc. SPIE2631, 226–233 (1995).
[CrossRef]

Evenson, S. A.

Fischer, M.

I. Melnik, R. Hibst, M. Fischer, G. Flemming, “New modified optical fiber tips for medical applications,” Opt. Eng. 32, 227–232 (1993).
[CrossRef]

Flemming, G.

I. Melnik, R. Hibst, M. Fischer, G. Flemming, “New modified optical fiber tips for medical applications,” Opt. Eng. 32, 227–232 (1993).
[CrossRef]

Garnier, F.

Goetzberger, A.

A. Goetzberger, W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977).
[CrossRef]

Greubel, W.

A. Goetzberger, W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977).
[CrossRef]

Hibst, R.

I. Melnik, R. Hibst, M. Fischer, G. Flemming, “New modified optical fiber tips for medical applications,” Opt. Eng. 32, 227–232 (1993).
[CrossRef]

Jungwirth, P. J.

P. J. Jungwirth, “Photoluminescent Concentrator-Based Receptive Fields,” M. S. thesis (Simon Fraser University, Burnaby, British Columbia, Canada, 1996).

Kravchenko, I.

I. Melnik, I. Kravchenko, N. Denisov, S. Dets, T. Rusina, “Transmission of straight and curved multimode optical fibers,” in Medical and Fiber Optic Sensors and Delivery Systems, G. Orellana, A. V. Scheggi, H. I. Croitoru, M. Miyagi, H. J. Sterenborg, eds., Proc. SPIE2631, 226–233 (1995).
[CrossRef]

Lambe, J.

Melnik, I.

I. Melnik, R. Hibst, M. Fischer, G. Flemming, “New modified optical fiber tips for medical applications,” Opt. Eng. 32, 227–232 (1993).
[CrossRef]

I. Melnik, I. Kravchenko, N. Denisov, S. Dets, T. Rusina, “Transmission of straight and curved multimode optical fibers,” in Medical and Fiber Optic Sensors and Delivery Systems, G. Orellana, A. V. Scheggi, H. I. Croitoru, M. Miyagi, H. J. Sterenborg, eds., Proc. SPIE2631, 226–233 (1995).
[CrossRef]

Papoulis, A.

A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1984).

Rawicz, A. H.

Roncali, J.

Rusina, T.

I. Melnik, I. Kravchenko, N. Denisov, S. Dets, T. Rusina, “Transmission of straight and curved multimode optical fibers,” in Medical and Fiber Optic Sensors and Delivery Systems, G. Orellana, A. V. Scheggi, H. I. Croitoru, M. Miyagi, H. J. Sterenborg, eds., Proc. SPIE2631, 226–233 (1995).
[CrossRef]

Stotlar, S. C.

S. C. Stotlar, “Silicon photodiodes: choosing the right sensor for the right application,” in The Photonics Design and Application Handbook (Laurin Publication, Pittsfield, Mass., 1994), pp. 127–134.

Weber, W. H.

Weiss, A. M.

E. Burstein, A. M. Weiss, “Two-dimensional optical position sensor,” in 9th Meeting on Optical Engineering in Israel, I. Shladov, ed., Proc. SPIE2426, 296–303 (1995).
[CrossRef]

Zewail, A. H.

Appl. Opt. (6)

Appl. Phys. (1)

A. Goetzberger, W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123–139 (1977).
[CrossRef]

Opt. Eng. (1)

I. Melnik, R. Hibst, M. Fischer, G. Flemming, “New modified optical fiber tips for medical applications,” Opt. Eng. 32, 227–232 (1993).
[CrossRef]

Sov. J. Opt. Technol. (1)

V. K. Baranov, “Luminescent concentrators as spectral elements,” Sov. J. Opt. Technol. 58, 472–474 (1991).

Other (5)

E. Burstein, A. M. Weiss, “Two-dimensional optical position sensor,” in 9th Meeting on Optical Engineering in Israel, I. Shladov, ed., Proc. SPIE2426, 296–303 (1995).
[CrossRef]

A. Papoulis, Probability, Random Variables and Stochastic Processes (McGraw-Hill, New York, 1984).

P. J. Jungwirth, “Photoluminescent Concentrator-Based Receptive Fields,” M. S. thesis (Simon Fraser University, Burnaby, British Columbia, Canada, 1996).

I. Melnik, I. Kravchenko, N. Denisov, S. Dets, T. Rusina, “Transmission of straight and curved multimode optical fibers,” in Medical and Fiber Optic Sensors and Delivery Systems, G. Orellana, A. V. Scheggi, H. I. Croitoru, M. Miyagi, H. J. Sterenborg, eds., Proc. SPIE2631, 226–233 (1995).
[CrossRef]

S. C. Stotlar, “Silicon photodiodes: choosing the right sensor for the right application,” in The Photonics Design and Application Handbook (Laurin Publication, Pittsfield, Mass., 1994), pp. 127–134.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Transformation of light in a LC. The incident light excites luminescent centers (1), uniformly generating luminescent light. Part of the luminescent light shown as beams 2–5 is trapping along the LC owing to total internal reflection.

Fig. 2
Fig. 2

Output emittance caused by symmetrical irradiation of the round LC: (a) symmetrical irradiation of the round LC causes identical output emittance in all four quadrants of LC, whereas displacement of the light spot from the LC center causes redistribution of the output signals; (b) the output irradiance from quadrant I is higher than that from quadrant III.

Fig. 3
Fig. 3

Geometry of the symmetrical LC: (a) round; (b) square. U1, U2, U3 and U4 are output signals from photodetectors.

Fig. 4
Fig. 4

Geometry of LC for ray-tracing simulation. The round light spot of radius Rs is displaced at the distance s from the center of X0Y coordinates. Position of the fluorescent center C is given by coordinates Xc, Yc.

Fig. 5
Fig. 5

Photons trapping through the LC (i > ic) and escaping from the LC (i < ic).

Fig. 6
Fig. 6

Dependence of coefficient k, the ratio between mean length l and radial distance r on refractive index n.

Fig. 7
Fig. 7

Boundary conditions and coupling of the LC to the PD.

Fig. 8
Fig. 8

Light losses at the LC–PD interface as a function of the refractive index nPD for refractive indices of matrices 1.4, 1.5, 1.6, and 1.7. Intermediate medium has a refractive index of 1.60.

Fig. 9
Fig. 9

Output signals P13 calculated for (a) round and (b) square LC’s. Curves 1 and 2 correspond to absorption coefficients of 0.1 and 0.05 mm-1, respectively. Radii of the light spot are 0.5 (dashed curves) and 2.5 mm (solid curves). Radius of the LC is 12 mm.

Fig. 10
Fig. 10

Ratio of signal curvatures calculated for Rs = 0.5 mm (dashed curve) and Rs = 2.5 mm (solid curve). The radius of the LC is 12 mm.

Fig. 11
Fig. 11

Output signals during scanning of the round (solid curve) and square (dashed curve) LC along the line Y = +3 mm. The radius of the light spot is 2.5 mm. The absorption coefficient is 0.05 mm-1.

Fig. 12
Fig. 12

Coupling of signals caused by the movement of a light spot along two coordinates X, Y.

Fig. 13
Fig. 13

Schematic view of experimental setup: 1, incandescent lamp; 2, lens; 3, differential amplifier.

Fig. 14
Fig. 14

Spectral response of PD in the visible range.

Fig. 15
Fig. 15

Photovoltaic response of PD for green light (λmax = 510 nm).

Fig. 16
Fig. 16

Frequency response of PD; loading resistance is 100 kΩ.

Fig. 17
Fig. 17

Output signals of 12-mm LC position sensor measured for two light spots: (a), (b) Rs = 0.5 mm and (c), (d) Rs = 2.5 mm, and for three vertical displacements: Y = -5 mm, 0, and +5 mm.

Fig. 18
Fig. 18

Linearization of output LC characteristics by correction of spatial LC sensitivity. The correction parameter is 1/(1 + εRc2) where ε = 0.01, and Rc is the radial distance of point C (see Fig. 4). Radius of light spot, 2.5 mm.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

G=Aa/Ac.
ηl=exp-αl,
Eout=Pout/2πRh,
r=Xs+Xc-x2+Ys+Yc-y21/2.
sinic=1/n.
lmi=rm/sini.
li=mlmi=1sinimrm=rsini,
r=mrm.
fll=-rΔill2-r21/2.
l=lflldl=rΔilminlmaxdll2-r21/2,
lmin=r;  lmax=r/sinic=rn,
l=rΔi lnn+n2-11/2.
k=lr=1Δi lnn+n2-11/2
Smax=R-Rs-htgic.
E0=N/πRs2.
ηTIR=1-cosic=1-1nn2-11/2.
Ebx, y=ηqηFηTIRXcYcexp-αkrXs, Ys, Xc, YcrXs, Ys, Xc, Yc.
Poutj=X,Y,jEbx, y.
Uj=SaPoutj,
P13=P1-P3,  P24=P2-P4.
ks=dP13/dSsquaredP13/dSround.
kc=P24S=0-P24S=5P24S=0.
kred=1/1+εRc2,
UT2=4kTR,
US2=2eIϕR2,
U=UT2+US21/2Λf1/2=0.882µV.
Smin=0.882µV0.66 mV/cm=1.336×10-3 cm=13.36 µm.
p=1-1+12n21-1n21/2.

Metrics